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ABSTRACT 

Integrated Water Vapor (IWV) is a crucial parameter in atmospheric studies, influencing weather 

patterns, storm development, and climate dynamics. This thesis investigates the diurnal variability 

of IWV, its prediction using machine learning (ML) techniques, and its application in storm 

nowcasting using data from a GNSS receiver network in Gadanki, India, over a three-year period 

(2018–2021). The study provides insights into IWV dynamics, demonstrating the potential of 

GNSS-based IWV data and advanced ML approaches in enhancing storm prediction and disaster 

preparedness. 

The diurnal and seasonal variations of IWV were analyzed using harmonic analysis on high-

resolution GNSS-derived IWV data. The study revealed that the diurnal (24-hour) harmonic 

dominates IWV variations, being significant for 93% of the time, while the semi-diurnal (12-hour) 

harmonic is significant for 36% of the time. Seasonal analysis showed that diurnal amplitudes are 

highest during monsoon, while semi-diurnal amplitudes peak in winter and post-monsoon. 

Vertically Integrated Moisture Flux Convergence (VIMFC) emerged as the primary driver of IWV 

variability, dictating the timing and magnitude of IWV peaks across all seasons. This detailed 

understanding of IWV variability establishes a foundation for its application in storm prediction. 

A Light Gradient Boosting Machine (LightGBM) model was developed to predict IWV with lead 

times ranging from 30 to 120 minutes. The model was trained using GNSS data, meteorological 

parameters, and derived IWV features, achieving a correlation coefficient of > 0.99 with observed 

IWV and a root mean square error (RMSE) of < 1 mm for shorter lead times. Even for longer lead 

times, the RMSE remained < 3 mm, demonstrating the robustness of the model. Sensitivity 

analysis revealed that IWV features are critical for short-term predictions, while additional 

predictors gain importance for longer lead times and stormy days. 

Building on this, a hybrid nowcasting model was developed that combines predicted IWV, 

brightness temperature, and threshold-based parameters. This model achieved an accuracy of 

97.5% with a false alarm rate of just 5%, significantly improving upon traditional methods. By 

utilizing predicted IWV, the model provides up to two hours of lead time for storm events, enabling 

better disaster preparedness. The study also validated the predictive potential of IWV gradients, 

demonstrating that moisture buildup occurs 1–4 hours prior to storm onset. 
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Additionally, multiple ML models, including Random Forest (RF), Decision Trees (DT), 

XGBoost, Logistic Regression, CatBoost and Artificial Neural Networks (ANN), were evaluated 

for storm nowcasting using GNSS-derived IWV and meteorological data. Random Forest emerged 

as the best-performing model, achieving high accuracy and robustness with AUC-ROC and 

Cohen’s Kappa scores exceeding those of other models. The combination of IWV and brightness 

temperature was identified as the most significant predictor set, highlighting the utility of GNSS-

based IWV data in real-time storm prediction systems. 

This thesis underscores the importance of GNSS-based IWV data in understanding atmospheric 

processes and advancing storm nowcasting techniques. By integrating data-driven methods and 

physical insights, the research provides a robust framework for early storm warning systems, 

aiding in disaster management, and reducing the socio-economic impacts of extreme weather 

events. 
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1.1 Introduction to storms 

Storms are severe weather phenomena characterized by violent winds, heavy precipitation (rain, 

snow, hail), lightning, and thunder and often cause severe damage to property and life (Figure 1.1) 

(Williams, 2017; Halverson, 2024; Atlas et al. 1963).  These disturbances occur when the 

atmosphere becomes highly unstable due to various factors. like surface heating, topographic 

lifting of air and convergence of air masses, etc., while the mid- and upper-tropospheric moisture 

aids the rapid development of storms. The storms are on the rise in recent years causing flash 

floods and lightning and the increase is partly attributed to climate change.  

(a) Flash floods: These occur when excessive rainfall leads to rapid flooding, particularly in urban 

areas with poor drainage and in mountainous terrain. Flash floods are one of the deadliest 

consequences of severe thunderstorms, especially in regions with limited capacity to absorb heavy 

rains (Doswell et al. 1996). 

(b) Hailstorms: These are caused by strong updrafts within thunderstorms that lift raindrops into 

freezing levels, resulting in the formation of hailstones that can cause damage to crops, vehicles, 

and buildings (Foote et al. 2016). In India, hailstorms are commonly observed in the West Bengal 

during the premonsoon season due to the convergence of different air masses.  

(c) Lightning strikes: Thunderstorms are the primary drivers of lightning activity, which poses 

risks to human safety, infrastructure, and wildfires (Rakov & Uman, 2003). Recent World 

Meteorological Organization (WMO) reports show that lightning now become a major threat to 

human life.  

 

Figure 1.1: Examples of destruction caused by storms include: (a) the 2013 Kedarnath disaster, 

and (b) flooding of human settlements. 
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The intensity and scale of storms vary, and they can be classified based on their size, 

duration, and the processes driving them (Newton, 1967; Dimri et al. 2015). 

1.1.1 Small-Scale Storms 

Small-scale storms, often referred to as local thunderstorms, are typically short-lived and affect 

relatively confined areas, usually ranging from a few square kilometers to tens of kilometers 

(Moller, 2001; Brooks and Weiss, 1999, Newton, 1967). These storms develop due to localized 

convective processes where warm, moist air rises rapidly, leading to cloud formation and 

precipitation. Thunderstorms are a common example of small-scale storms and can bring hazards 

such as lightning, heavy rainfall, hail, and even tornadoes (Harper et al. 2000, Atlas et al. 1963). 

1.1.2 Mesoscale Storms 

Mesoscale refers to weather systems that occur on a scale ranging from 20 to several hundred 

kilometers, persisting for hours or even days (Wang and Johnson, 2006). Examples include squall 

lines, mesoscale convective systems (MCS), and mesoscale convective complexes (MCC). These 

systems are driven by organized convection and often involve clusters of thunderstorms that can 

extend across large areas, leading to significant precipitation and strong winds (Houze Jr, 2004).  

Squall lines are one of the example. These are long, narrow bands of thunderstorms that can stretch 

across hundreds of kilometers. They typically form ahead of cold fronts and produce severe 

weather, including strong winds and heavy rain (Houze, 2014). Apart from that MCC and MCS 

systems are there. These systems represent clusters of thunderstorms that behave as a single 

organized system, often producing widespread rainfall, flash flooding, and strong winds. MCCs 

can cover an area larger than 100,000 square kilometers, persisting for 6-12 hours or more 

(Maddox, 1980; Tyagi et al. 2012). Mesoscale systems are important because they often lead to 

prolonged and widespread severe weather events. For example, MCSs are responsible for much of 

the heavy rainfall and flash flooding observed in many regions, particularly in the mid-latitudes 

and tropical regions (Schumacher & Johnson, 2005). 

1.1.3 Synoptic-Scale Storms 

At the largest scale are tropical cyclones, hurricanes, and typhoons, which are essentially the same 

type of storm but named differently depending on their location (Emanuel, 2003). These massive 
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storm systems form over warm ocean waters and can grow to span thousands of kilometers. They 

are driven by the energy released from the condensation of water vapor, making them highly 

destructive in terms of both wind speed and rainfall. 

For example, low-pressure systems form over warm tropical waters and can intensify into 

hurricanes (Atlantic) or typhoons (Pacific) or cyclones (North Indian Ocean). Their structure 

includes a well-defined eye surrounded by an eyewall of intense thunderstorms, which generate 

strong winds and heavy rains (Emanuel, 2003). Hurricanes are classified based on their wind speed 

according to the Saffir-Simpson scale, with Category 5 hurricanes having sustained winds greater 

than 157 mph (252 km/h) (NOAA, 2021). These storms can cause catastrophic damage due to 

wind, storm surges, and flooding. 

These large-scale systems have far-reaching impacts, often affecting entire regions and causing 

significant disruptions to infrastructure, ecosystems, and human settlements. For instance, 

Hurricane Katrina (2005) and Typhoon Haiyan (2013) caused widespread devastation and loss of 

life due to storm surges, flooding, and extreme winds (Knabb et al. 2006; Lagmay et al. 2015). 

 

Figure 1.2: Example of (a) small (b) meso (c)synoptic scale storms (Source: Google images). 

1.2 Why Is Storm Prediction Important? 

Storms are among the most destructive natural phenomena, often resulting in significant human 

and economic losses. Accurate storm prediction is essential for mitigating these impacts, as it 

provides the basis for early warnings and preparedness strategies. The ability to forecast storms, 

especially high-impact events like cyclones, thunderstorms, and hurricanes, directly affects a 
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community's ability to respond effectively, thus saving lives and reducing damage to property and 

infrastructure (Morss et al. 2022; Frame et al. 2017; Esteban et al. 2015). 

1.2.1 Human Lives and Safety 

Storms are a leading cause of mortality during natural disasters, with fatalities often arising from 

drowning, windborne debris, and structural collapses. Accurate storm prediction allows authorities 

to issue early warnings (Hermans et al. 2022) giving individuals and communities the opportunity 

to take protective measures, such as evacuation or sheltering in place. For example, Hurricane 

Katrina in 2005 caused over 1,800 deaths, with many lives lost due to the failure to evacuate in 

time (Knabb et al. 2006). However, effective forecasting and timely evacuation orders have been 

credited with reducing death tolls in other major storm events (Blake et al. 2013). Storm warnings 

allow people to avoid traveling or working in dangerous areas, such as coastal zones during storm 

surges or flood-prone areas during intense rain. This is particularly critical for vulnerable 

populations, such as those living in poorly constructed buildings or coastal communities exposed 

to high storm surge risks. 

1.2.2 Economic Damage and Infrastructure Protection 

Storms cause billions of dollars in economic losses each year due to the destruction of homes, 

businesses, infrastructure, and agriculture. The ability to predict these events allows governments 

and businesses to prepare for the impending disaster by securing property, deploying emergency 

services, and protecting critical infrastructure. The World Bank estimates that extreme weather 

events, including storms, cost the global economy more than $300 billion annually (Hallegatte et 

al. 2016; Vogt-Schilb, & Bangalore, 2017). Economic impacts are most profound in sectors like 

construction, transportation, and energy, where disruptions can lead to long-term economic 

damage. For instance, Hurricane Harvey (2017) caused $125 billion in damages in Texas, much of 

which was attributed to flooding that could have been mitigated by better urban planning and 

preparedness (Blake & Zelinsky, 2018). Accurate forecasts allow cities and regions to implement 

mitigation strategies such as reinforcing buildings, shoring up levees, or shutting down critical 

infrastructure like airports and power plants ahead of a storm. For example, Japan has significantly 

reduced storm-related damage by implementing stringent building codes and flood defenses, 

supported by accurate storm predictions and risk management strategies (Mimura et al. 2011). 
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1.2.3 Agriculture and Food Security 

Agriculture is highly vulnerable to storm events, with impacts including crop destruction, soil 

erosion, and livestock loss. Predictive capabilities help farmers and agricultural businesses protect 

crops and livestock ahead of storms, improving food security and reducing economic losses. For 

example, early warnings about the 2019 Typhoon Hagibis in Japan helped farmers mitigate losses 

by harvesting crops early and securing livestock before the storm hit (Shimozono et al. 2020). In 

regions heavily reliant on agriculture, such as South Asia or sub-Saharan Africa, storm prediction 

is vital for minimizing the economic and social impacts of extreme weather events. Storms can 

devastate crops, leading to food shortages and rising food prices, which disproportionately affect 

lower-income communities (FAO, 2015). 

1.2.4 Water Management and Flood Control 

Storms often lead to extreme rainfall and flooding, which can overwhelm drainage systems, cause 

rivers to overflow, and result in widespread water damage. Predictive models provide critical 

information to water management authorities, allowing them to implement preemptive measures 

like reservoir drawdowns, the construction of temporary flood barriers, and the preparation of 

emergency response teams (Medema et al. 2008). In many cases, storm predictions can help 

mitigate the risks associated with urban flooding, which has become a growing problem due to 

increased urbanization and insufficient drainage systems (Bakker & Buisman, 2020; Zhang et al. 

2016). 

1.2.5 Risk Assessment and Disaster Preparedness 

Accurate storm prediction is essential for risk assessment and disaster preparedness. Governments, 

businesses, and communities rely on forecast data to plan and execute disaster response strategies. 

Risk assessments informed by storm forecasts help prioritize which regions are most likely to be 

affected and ensure that resources are deployed efficiently. This reduces the financial and logistical 

burden on emergency services and ensures that help reaches vulnerable areas on time. For example, 

predictive models have improved the deployment of emergency services during hurricanes in the 

United States. Agencies such as the Federal Emergency Management Agency (FEMA, 2020) use 

storm predictions to pre-position personnel, supplies, and equipment in areas likely to be affected 

by a storm, enhancing response times and overall effectiveness (FEMA, 2020) 
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1.3 Conventional Techniques for Predicting Storms 

Storm prediction has significantly improved over the years through advances in computational 

capabilities and observational technologies (Bauer et al. 2015, Liu et al. 2012). However, 

conventional techniques such as Numerical Weather Prediction (NWP) models and Ensemble 

Forecasting remain the foundation of modern meteorological forecasting. Both approaches have 

distinct strengths and limitations, which must be considered when utilizing them for storm 

prediction. 

1.3.1 Numerical Weather Prediction (NWP) Models 

Numerical Weather Prediction (NWP) models are essential for simulating atmospheric processes 

and forecasting storms (Steppeler et al. 2003). These models operate by solving a set of 

mathematical equations known as the Navier-Stokes equations, which describe the flow of fluid in 

the atmosphere (Temam 1995). NWP models consider a wide array of meteorological variables, 

such as temperature, humidity, wind speed, and pressure, to simulate the behavior of the 

atmosphere over time. They are utilized on both global and regional scales, providing detailed 

forecasts ranging from a few hours to several days ahead. NWP models divide the atmosphere into 

a grid system where each grid point represents the state of the atmosphere. The model use initial 

conditions observational data from satellites, radars, radiosondes, and surface stations to predict 

how the atmosphere will evolve. 

Prominent examples of NWP models include: Global models like the European Centre for 

Medium-Range Weather Forecasts (ECMWF) model and the Global Forecast System (GFS) used 

by the United States (Bauer et al. 2015). Regional models, such as the Weather Research and 

Forecasting (WRF) model, which is applied to provide higher-resolution forecasts over smaller 

geographic regions (Skamarock et al. 2019). 

There are some disadvantages associated with NWP models as they are Computationally Intensive. 

Running NWP models requires significant computational power due to the vast amount of data 

processing and the complexity of the atmospheric equations involved. NWP models must solve 

millions of calculations across thousands of grid points for each time step of the forecast. The finer 

the resolution (i.e., the smaller the grid points), the more accurate the prediction, but this also 
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increases computational demands. High-performance computing (HPC) resources are required to 

run these models efficiently (Bauer et al. 2015). 

Apart from that it suffers with Initial Condition Errors and Model Bias. The accuracy of NWP 

models depends heavily on the quality of the initial conditions—the data fed into the model at the 

start of the simulation. Errors in observational data, incomplete data coverage (especially over 

oceans and remote regions), and delays in real-time data assimilation can lead to inaccuracies in 

the initial conditions. Even small errors in the initial state can propagate and amplify over time, a 

phenomenon known as sensitivity to initial conditions (Lorenz, 1969). Furthermore, NWP models 

can introduce biases due to simplifications and assumptions made in representing atmospheric 

processes, such as cloud microphysics, convection, and turbulence (Rodwell & Palmer, 2007). 

1.3.2 Ensemble Forecasting 

Ensemble forecasting is an extension of traditional NWP that seeks to account for the inherent 

uncertainties in weather prediction. Instead of running a single deterministic forecast, ensemble 

forecasting involves running multiple model simulations, each with slightly perturbed initial 

conditions or different model configurations. These simulations generate a range of possible 

outcomes, providing a probabilistic forecast rather than a single prediction (Anderson 1996). The 

concept of ensemble forecasting is based on the chaotic nature of the atmosphere (Leutbecher, M. 

and Palmer 2008). Small uncertainties in initial conditions can lead to vastly different outcomes 

over time. By running multiple forecasts with small variations in these conditions, meteorologists 

can assess the range of potential outcomes and the likelihood of different storm scenarios. 

Prominent examples of ensemble systems include ECMWF Ensemble Prediction System (EPS), 

which produces medium-range probabilistic forecasts for up to 15 days (Buizza et al. 2003) and 

NCEP Global Ensemble Forecast System (GEFS) used by the National Weather Service in the 

United States, which provides ensemble forecasts to improve the accuracy and reliability of 

medium- to long-range predictions (Toth & Kalnay, 1997). Ensemble forecasts provide a 

probability distribution of possible outcomes, allowing forecasters to express the likelihood of 

various storm scenarios (e.g., storm intensity, track, and timing). They help mitigate the limitations 

of deterministic forecasts, which are sensitive to initial condition errors and cannot fully capture 

the uncertainty of storm evolution. 
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There are few disadvantages associated with this technique including it is highly Resource-

Intensive. Ensemble forecasting requires significant computational resources because multiple 

simulations must be run simultaneously. Running 20 to 50 ensemble members with slight 

variations in initial conditions can be demanding, especially at higher resolutions (Buizza et al. 

2003). This computational burden is one of the key challenges in expanding the use of ensemble 

forecasting, particularly for real-time applications where fast results are needed. Another 

challenges of ensemble forecasting is balancing model complexity with resolution. High-

resolution models can provide more detailed forecasts, but they also increase computational costs. 

As a result, ensemble forecasts often sacrifice spatial or temporal resolution to maintain a feasible 

number of ensemble members. This trade-off can lead to less detailed predictions, especially in 

regions requiring high-resolution data to accurately predict small-scale phenomena like 

thunderstorms or local flooding (Leutbecher & Palmer, 2008). 

Despite these limitations, ensemble forecasting has become a critical tool for storm prediction (Wu 

et al. 2020; Flowerdew et al. 2010). It allows forecasters to better understand the range of possible 

outcomes and communicate forecast uncertainty to decision-makers and the public. For example, 

ensemble forecasts have been crucial for predicting the potential tracks of storms, which are 

notoriously difficult to predict due to their sensitivity to initial conditions and small changes in 

environmental factors (Zhu et al. 2002). 

1.3.3 Radar-Based Nowcasting 

Radar-based nowcasting plays a critical role in short-term storm prediction. By using real-time 

radar data, this technique can provide high-resolution forecasts for the next few hours, making it 

particularly useful for predicting thunderstorms and severe weather (Wilson et al. 1998; Prudden 

et al. 2020). 

One of the primary advantages of radar-based nowcasting is its high temporal and spatial 

resolution, which allows for detailed observation of storm structure, intensity, and movement. This 

level of detail enables timely and accurate short-term forecasts, crucial for predicting severe 

weather events such as thunderstorms and squall lines. For example, studies have demonstrated 

that radar data provides critical insights into the organization and life cycle of convective systems, 

enabling forecasters to issue timely warnings (Wilson et al. 1998). Additionally, radar systems 
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provide continuous real-time data, which is essential for tracking the rapid development of 

localized weather phenomena (Pfister et al. 1999). This makes radar-based nowcasting particularly 

effective for localized predictions, where detailed and area-specific forecasts are required to 

mitigate potential impacts on communities and infrastructure (Kober and Tafferner, 2009). 

Despite its advantages, radar-based nowcasting has notable limitations. It is most effective for 

short-term forecasts, typically up to a few hours, as it relies on the extrapolation of current storm 

movement and intensity. This approach becomes less effective for longer-term predictions because 

radar data alone cannot capture broader atmospheric trends or the dynamic evolution of storm 

systems. For instance, convective storms can intensify or dissipate rapidly due to changes in 

atmospheric conditions, which radar-based methods often fail to predict accurately (Wilson et al. 

1998, Davis 2001). However, the accuracy of radar-based nowcasting is highly dependent on radar 

coverage. In regions with sparse or low-quality radar infrastructure, the reliability of forecasts may 

be significantly reduced. Ground clutter, signal attenuation, and beam blockages caused by terrain 

or tall structures can further degrade the quality of radar observations (Fabry et al. 1994). Another 

challenge is the complex interpretation of radar data, which requires expertise to account for 

artifacts and noise, such as anomalous propagation, that can introduce errors in the forecast 

(Collier, 1996).  

1.3.4 Radiosonde and Satellite Observations for nowcasting application 

Radiosonde and satellite observations contribute significantly to the larger picture of storm 

prediction by providing valuable atmospheric data. Radiosondes are balloon-borne instruments 

that provide vertical profiles of temperature, humidity, and pressure, which are crucial for 

understanding the atmospheric structure and identifying potential instability that could lead to 

storm development (Vaisala, 2013). Satellites, on the other hand, offer broad coverage of 

atmospheric conditions, allowing for continuous monitoring of large areas, which is particularly 

useful for tracking storm systems over oceans and remote regions. 

Radiosondes, which are balloon-borne instruments, provide detailed vertical profiles of 

temperature, humidity, and pressure. These data are invaluable for understanding the 

thermodynamic structure of the atmosphere and calculating instability indices such as Convective 

Available Potential Energy (CAPE) and the K Index, which are commonly used to assess the 
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potential for convective storms (Vaisala, 2013). The high vertical resolution of radiosonde data 

allows meteorologists to identify atmospheric layers prone to instability, making it an essential 

tool for localized storm forecasting. Satellites, on the other hand, provide broad spatial coverage, 

enabling continuous monitoring of large geographic areas, including remote and oceanic regions 

where ground-based observations are sparse. Real-time data from satellites, such as those from the 

Geostationary Operational Environmental Satellites (GOES), offer critical information about 

cloud formation, water vapor distribution, and storm movement, facilitating timely warnings and 

decision-making during rapidly evolving weather events (Schmit et al. 2017). 

Despite their advantages, radiosonde and satellite observations have notable limitations. 

Radiosondes are typically launched only twice daily, resulting in limited temporal resolution that 

can make it challenging to capture rapid atmospheric changes associated with storm development. 

Furthermore, their spatial coverage is restricted to specific launch locations, leaving large data 

gaps over oceans, mountainous regions, and sparsely populated areas (Seidel et al. 2009). While 

satellites excel in providing broad coverage, their spatial resolution is often insufficient to detect 

small-scale atmospheric features, such as localized convection, which are critical for accurate 

storm predictions (Fabry et al. 1994). Additionally, interpreting satellite data is complex, as the 

information retrieved is influenced by various atmospheric and surface conditions, requiring 

sophisticated algorithms and expertise to ensure accuracy (Collier, 1996). These limitations 

highlight the need for integrating radiosonde and satellite data with complementary techniques, 

such as GNSS and radar observations, to improve the accuracy and lead time of storm forecasts. 

1.4 Evolving Methods of Storm Prediction: Water Vapor Variation-Based Studies 

Nowcasting refers to the prediction of weather a few minutes to 6 hours in advance. As traditional 

methods of storm prediction, such as numerical weather prediction (NWP) models and radar-based 

nowcasting, face limitations in accuracy and lead time, newer approaches have emerged to 

complement these methods. One such evolving method is the study of water vapor variations in 

the atmosphere. Water vapor plays a crucial role in the formation and intensification of storms, and 

its continuous monitoring offers an innovative way to predict severe weather events like 

thunderstorms, hurricanes, and tropical cyclones. 
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1.4.1 Importance of Water Vapor in Storm Development 

Water vapor is a fundamental component of the Earth’s atmosphere and serves as the primary 

source of moisture for cloud formation and precipitation (Jacob, 2001; Schneider et al. 2010). 

Latent heat release, which occurs when water vapor condenses into liquid, is a key energy source 

that fuels storm development and intensification (Williams, 2017). The higher the concentration 

of water vapor in a given region, the greater the potential for storm formation, as the available 

moisture can lead to strong convective processes (Ralph et al. 2004; Sherwood et al. 2010; Del 

Genio and Kovari, 2002). In particular, water vapor is vital for the development of mesoscale 

convective systems and tropical cyclones. For example, in tropical regions, where the atmosphere 

is typically rich in moisture, water vapor variations can indicate the onset of cyclonic activity. As 

water vapor accumulates in the lower layers of the atmosphere, it creates conditions conducive to 

deep convection, leading to the development of storm systems (Emanuel, 1991). 

1.4.2 Water Vapor Variation as a tool for Nowcasting Storms 

Water vapor buildup has been increasingly recognized as a precursor to storm formation. By 

monitoring changes in atmospheric water vapor content, meteorologists can identify areas of 

potential convective activity well before traditional forecasting tools detect the early signs of 

storms. For instance, rapid increases in water vapor in the lower troposphere can indicate the 

likelihood of severe thunderstorm development (Schmit et al. 2017). 

 

Figure 1.3: (a) Moisture built up before the storm’s occurrence (Adams et al., 2011) (b) Flash 

flood caused by storm. 



13 
 

Recent research has shown that Integrated Water Vapor (IWV) measurements—an estimate of the 

total column of water vapor in the atmosphere can provide valuable insights into storm 

predictability. IWV measurements have been linked to the occurrence of atmospheric rivers—

narrow corridors of concentrated moisture that can lead to heavy precipitation and flooding when 

they make landfall (Zhu & Newell, 1998). Monitoring these water vapor-rich phenomena allows 

meteorologists to predict potential storm impacts with greater accuracy.  

Figure 1.3 (a) is representing a case study (Adams et al. 2011) where it can be seen abnormal 

enhancement in IWV before storm occurrence at 2 different locations. Identifying such storms can 

be useful for nowcasting of storm events. 

1.5 Importance of Water Vapor in the Atmosphere 

Water vapor plays a fundamental role in atmospheric processes and weather patterns, acting as a 

critical regulator of both weather dynamics and climate systems. Its unique properties and 

behaviors are essential in various meteorological phenomena, influencing everything from local 

weather events to global climate patterns. Understanding the distribution, movement, and impact 

of water vapor in the atmosphere is crucial for accurate weather prediction and climate modeling. 

1.5.1 Water Vapor as a Greenhouse Gas 

Water vapor is the most abundant greenhouse gas in the atmosphere, contributing significantly to 

the natural greenhouse effect, which keeps the Earth’s surface warm enough to sustain life 

(Mitchell, 1989; Held and Soden ,2000; El Zein and Chehayeb et al. 2005). It absorbs and re-emits 

infrared radiation, trapping heat within the atmosphere. According to Kiehl and Trenberth (1997), 

water vapor accounts for approximately 50% of the Earth's greenhouse effect, while clouds 

contribute an additional 25%. This makes water vapor a key player in regulating the Earth's 

temperature. Unlike other greenhouse gases like carbon dioxide (CO₂) and methane (CH₄), which 

are directly emitted by human activities, the concentration of water vapor is controlled indirectly 

through feedback processes. As the atmosphere warms due to increased CO₂, for example, the 

capacity of the atmosphere to hold water vapor increases, leading to more evaporation and higher 

concentrations of atmospheric water vapor. This feedback amplifies warming, creating what is 

known as a positive feedback loop (Held & Soden, 2000). 
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1.5.2. Role in the Hydrological Cycle 

Water vapor is the gaseous phase of water within the hydrological cycle, the continuous movement 

of water between the Earth's surface and the atmosphere (Mitchell, 1989; Held and Soden ,2000; 

El Zein and Chehayeb et al. 2005). It forms when water evaporates from oceans, rivers, lakes, and 

other water bodies or through the process of transpiration in plants. Once in the atmosphere, water 

vapor can travel long distances before condensing into clouds and eventually returning to the 

surface as precipitation (rain, snow, sleet, or hail). The cycling of water vapor is crucial for 

maintaining the Earth’s climate equilibrium (Schneider et al. 2010; Galewsky et al. 2016; Allan et 

al. 2020). It facilitates the transfer of heat between the surface and the atmosphere. When water 

evaporates, it absorbs heat from the environment, cooling the surface. This absorbed energy, 

known as latent heat, is released when water vapor condenses back into liquid during cloud 

formation, playing a vital role in driving atmospheric circulation and storm development (Rogers 

& Yau, 1989). 

1.5.3. Influence on Weather Systems and Storm Development 

Water vapor is a critical factor in the development of clouds, precipitation, and storms (Sherwood 

et al. 2010). The presence of sufficient water vapor in the lower atmosphere can lead to the 

formation of cumulus clouds, which are precursors to thunderstorms and other severe weather 

phenomena. As water vapor rises, it cools and condenses, releasing latent heat. This process drives 

convection, which is responsible for the development of towering thunderclouds and, in extreme 

cases, the formation of severe storms such as hurricanes, typhoons, and tornadoes (Emanuel, 

2003). 

Tropical cyclones, for example, are powered primarily by the condensation of water vapor in the 

atmosphere. As water evaporates from warm ocean surfaces, it increases the moisture content of 

the air. When this moist air rises and condenses, it releases large amounts of latent heat, which 

intensifies the storm system. Hurricanes, in particular, are fueled by large quantities of water vapor, 

and their strength is often linked to the amount of moisture in the atmosphere (Emanuel, 1991). 

Water vapor also plays a critical role in precipitation formation. As water vapor condenses into 

cloud droplets, these droplets coalesce and grow in size, eventually becoming heavy enough to fall 
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to the Earth as precipitation. This process is key in determining rainfall patterns and the distribution 

of freshwater resources across the planet (Wallace & Hobbs, 2006). 

1.5.4 Water Vapor and Atmospheric Stability 

The amount of water vapor in the atmosphere is also a critical factor in determining atmospheric 

stability (Galewsky et al. 2010; Sherwood et al. 2010). A moist atmosphere is more likely to 

become unstable, leading to convection and the development of thunderstorms. Conversely, a dry 

atmosphere tends to be more stable, with fewer chances for cloud development and precipitation. 

The measure of atmospheric moisture, known as precipitable water vapor (PWV), is often used by 

meteorologists to assess the potential for severe weather events (Bevis et al. 1992). Convective 

Available Potential Energy (CAPE), a common metric for measuring atmospheric instability, is 

highly dependent on the moisture content of the atmosphere. High values of CAPE typically 

indicate a greater likelihood of strong convection and severe weather, as they signify the presence 

of significant amounts of water vapor that can fuel storm development (Markowski & Richardson, 

2011). 

1.5.5 Water Vapor as a Climate Feedback Mechanism 

Water vapor acts as both a short-term weather factor and a long-term climate feedback mechanism. 

As the atmosphere warms due to increased concentrations of CO₂ and other greenhouse gases, its 

ability to hold water vapor increases—a process governed by the Clausius-Clapeyron equation. 

This means that for every degree Celsius increase in atmospheric temperature, the air can hold 

about 7% more water vapor (Held & Soden, 2000). 

This increased water vapor enhances the greenhouse effect, leading to further warming—a process 

known as water vapor feedback. This feedback is one of the most significant contributors to the 

sensitivity of the Earth’s climate system to changes in greenhouse gas concentrations. Studies 

show that water vapor feedback amplifies the warming effect of CO₂ by about two to three times 

(Dessler, 2010). 

1.6 Existing Techniques to Measure Water Vapor 

Due to its importance, water vapor is continuously monitored using a variety of methods. 

Radiosondes, satellite-based sensors, and ground-based GNSS (Global Navigation Satellite 
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System) networks are all employed to measure the distribution of water vapor in the atmosphere. 

GNSS, in particular, has proven to be an effective tool for real-time monitoring of precipitable 

water vapor, providing valuable data for both weather forecasting and climate studies (Champollin 

et al. 2005; Bock et al. 2005). Satellite missions like the Aqua satellite, part of NASA's Earth 

Observing System, have provided critical data on water vapor content and distribution, improving 

our understanding of its role in climate and weather systems (Schneider et al. 2010). Each method 

has its own strengths and limitations in terms of spatial and temporal resolution, accuracy, and 

coverage 

1.6.1 Satellite-Based Remote Sensing 

Satellites provide global coverage and are capable of measuring water vapor in both the upper and 

lower atmosphere. They are typically divided into two types based on their orbits: Geostationary 

(GEO) and Low Earth Orbit (LEO) satellites. 

GEO satellites orbit the Earth at the same rotational speed as the planet, allowing them to remain 

fixed over a particular region. Instruments onboard, such as infrared sensors, monitor water vapor 

continuously, providing valuable data for weather forecasting. GEO satellites are particularly 

effective for tracking large-scale atmospheric phenomena like tropical cyclones and moisture 

patterns. However, their coverage is limited to specific regions, and their resolution decreases with 

increasing distance from the equator (Schmit et al. 2017). 

LEO satellites orbit at lower altitudes (approximately 200–800 km) and provide more detailed 

measurements, with higher spatial resolution than GEO satellites. Instruments such as microwave 

sensors can penetrate clouds and provide accurate water vapor measurements even in regions 

covered by dense clouds or precipitation. LEO satellites provide near-global coverage as they pass 

over different areas of the Earth during each orbit (Wentz et al. 2007). However, their temporal 

resolution is limited since they only pass over the same location at specific intervals. 

1.6.2 In Situ Measurements  

In-situ measurements refer to direct observations of atmospheric parameters, typically through the 

use of radiosondes and dropsondes. Radiosonde are balloon-borne instruments measure 

temperature, pressure, humidity, and wind as they ascend through the atmosphere. Radiosondes 
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provide highly accurate vertical profiles of water vapor but are limited in spatial coverage, as they 

are typically launched from fixed ground stations twice daily. This limited temporal resolution 

poses challenges for continuous monitoring (Seidel et al. 2009). Similar to radiosondes, 

dropsondes are released from aircraft and measure the atmospheric parameters as they descend. 

They are particularly useful during severe weather events like hurricanes, where vertical profiles 

of water vapor and other atmospheric parameters are needed for storm prediction (Franklin et al. 

2003). However, the deployment of dropsondes is costly and cannot be done routinely, making it 

a tool primarily for research or extreme weather events. 

1.6.3 Ground-Based Remote sensing Observation 

Ground-based systems provide continuous monitoring of water vapor with high temporal 

resolution but are limited in spatial coverage compared to satellite observations. Key ground-based 

methods include WVR, LIDAR, FTIR, and GNSS meteorology. 

WVR measures microwave radiation emitted by water vapor in the atmosphere to estimate the 

total column of water vapor. It is widely used in radio astronomy and satellite communication but 

is susceptible to interference from clouds and precipitation. Whereas LIDAR Uses laser pulses to 

measure atmospheric properties, including water vapor. LIDAR provides high-resolution vertical 

profiles of water vapor but is limited to clear-sky conditions as clouds and precipitation can 

attenuate the laser signals (Eichinger et al. 1999). FTIR instruments measure the absorption of 

infrared radiation by atmospheric gases, including water vapor. This technique provides accurate 

column measurements of water vapor but requires clear skies and is usually limited to research 

settings (Schneider et al. 2010). 

1.6.4 GNSS Meteorology 

This technique has gained significant attention in recent years due to its high accuracy, continuous 

operation, and global availability. Global Navigation Satellite System (GNSS) meteorology is a 

relatively new and highly effective method for monitoring water vapor. GNSS receivers, which 

are widely used for positioning and navigation, can also be employed to measure water vapor in 

the atmosphere. This technique exploits the fact that water vapor in the atmosphere causes a delay 

in the propagation of GNSS signals as they travel from satellites to ground-based receivers. By 
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analyzing these delays, scientists can estimate the amount of precipitable water vapor (PWV)—

the total amount of water vapor in a column of atmosphere above the receiver (Jade et al. 2005. 

The concept of using GNSS for meteorological purposes was first proposed by Bevis et al. (1992), 

and since then, the method has been widely adopted for weather monitoring and forecasting. GNSS 

meteorology is particularly valuable because it provides high temporal resolution, continuous 

measurements, and operates under all weather conditions, unlike optical or infrared methods.  

Figure 1.4: Pictorial representation of different techniques of measure atmospheric water vapor 

including (a) LIDAR, (b) Radiosonde, (c) Microwave Radiometer, (d) GNSS.  

1.7 How GNSS Measures Water Vapor 

As GNSS signals pass through the atmosphere, they are delayed due to the refractivity of the 

atmosphere, which depends on pressure, temperature, and the amount of water vapor. This delay 

is known as the zenith total delay (ZTD), which consists of two components: 

ZHD Caused by the dry components of the atmosphere (primarily nitrogen and oxygen). ZWD 

Caused by water vapor in the atmosphere. Once the ZHD is determined (based on surface pressure 

observations), the ZWD can be estimated. The ZWD is directly related to the amount of PWV, 

allowing meteorologists to derive real-time water vapor measurements (Bevis et al. 1992). 
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1.8 Why GNSS for Water Vapor Measurement? 

Global Navigation Satellite System (GNSS) meteorology has emerged as a powerful tool for 

measuring atmospheric water vapor due to its many distinct advantages over traditional techniques. 

From its continuous monitoring capability to high temporal resolution, GNSS offers a unique and 

valuable solution for both weather forecasting and climate research. Below, we explore in detail 

why GNSS has become a favored method for water vapor measurement, supported by real-world 

examples and references. 

1.8.1 Continuous Monitoring and High Temporal Resolution 

GNSS receivers provide continuous, near-real-time measurements of atmospheric water vapor, 

which is essential for weather forecasting and storm prediction. Unlike radiosondes or satellite-

based sensors that take measurements at fixed intervals (e.g., twice daily for radiosondes or once 

every few hours for some satellites), GNSS data is collected continuously, providing updates at 

intervals as short as every 5 to 30 minutes. This high temporal resolution enables meteorologists 

to detect rapid changes in water vapor content, making GNSS a crucial tool for tracking fast-

evolving weather phenomena such as thunderstorms, flash floods, and tropical cyclones (Bevis et 

al. 1992; Van Baelen et al. 2011). 

In contrast, satellite-based sensors, while excellent for global coverage, often have limited revisit 

times, especially in the case of Low Earth Orbit (LEO) satellites. Geostationary satellites provide 

more frequent data but are limited by their spatial resolution and coverage of high-latitude regions. 

The continuous nature of GNSS measurements makes it superior for monitoring localized or short-

term weather events that evolve rapidly over time. 

1.8.2 All-Weather Capability 

A major advantage of GNSS is its ability to operate in all weather conditions. Unlike optical and 

infrared sensors, which can be significantly affected by cloud cover, rain, or snow, GNSS signals 

are relatively unaffected by these adverse weather conditions. The propagation of GNSS signals is 

primarily impacted by atmospheric water vapor, which is precisely what this technique measures. 

This makes GNSS particularly useful for monitoring storm systems, where other measurement 

methods might fail due to poor visibility or interference from clouds (Shoji et al. 2009; Bock et al.  
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2005; Vaquero-Martinez et al. 2022). In extreme weather situations, such as during the onset of a 

tropical cyclone, GNSS receivers can continue to provide accurate water vapor measurements 

when traditional satellite and optical instruments may be limited. This capability is vital for 

maintaining continuous data flow during critical periods, enhancing the ability to issue timely 

weather warnings. 

1.8.3 Global Coverage and Dense Networks 

One of the unique advantages of GNSS is its potential for global coverage. GNSS networks, such 

as GPS, GLONASS, Galileo, and BeiDou, already span the globe for navigation purposes, and 

many of these stations are now being used for meteorological applications. The global 

infrastructure of GNSS stations, combined with the increasing deployment of new stations, makes 

it possible to monitor water vapor levels in almost any region on Earth. This includes remote and 

otherwise under-observed regions, such as the oceans, deserts, and polar areas, where traditional 

meteorological networks are sparse (Gutman et al. 2004). 

For instance, Japan’s GEONET system consists of over 1,200 GNSS stations that provide 

continuous data on water vapor. This dense network has proven invaluable for tracking water vapor 

variations associated with convective storms, improving local weather forecasts, and advancing 

storm prediction capabilities (Shoji et al. 2009).  

The development of multi-GNSS systems (combining data from GPS, Galileo, GLONASS, and 

BeiDou) increases both the accuracy and coverage of water vapor measurements. As more GNSS 

satellites are launched and more ground stations are established, the spatial and temporal resolution 

of water vapor data will continue to improve, providing even better global coverage for weather 

monitoring and forecasting. 
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Figure 1.5: A dense GNSS network in (a) USA (b) Japan (c) Europe. 

1.8.4 No Mechanical Movement Required 

Unlike some meteorological instruments, GNSS receivers do not require any mechanical parts or 

moving components, which reduces the risk of mechanical failure and the need for regular 

maintenance. This increases the reliability of GNSS as a long-term monitoring tool. Mechanical 

failures can be a significant issue for instruments like radiosondes, where the entire system is 

subject to environmental wear and tear, particularly in extreme weather conditions (He et al. 2021). 

The static nature of GNSS receivers also makes them cost-effective and easy to maintain compared 

to other ground-based water vapor measurement systems, such as weather radars or LIDAR 

systems, which require more complex infrastructure and regular upkeep. 

1.8.5 Highly Accurate Water Vapor Measurement 

The GNSS-based approach to water vapor measurement is built upon the accurate determination 

of the Zenith Total Delay (ZTD) experienced by GNSS signals as they pass through the 
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atmosphere. This delay is caused by both the dry (hydrostatic) and wet (water vapor) components 

of the atmosphere. By separating the Zenith Wet Delay (ZWD) from the ZTD, meteorologists can 

derive the Precipitable Water Vapor (PWV)—the total column of water vapor in the atmosphere 

above the GNSS station (Bevis et al. 1992). 

Studies have shown that GNSS-based measurements of PWV are highly accurate and compare 

favorably with traditional methods such as radiosondes, satellite-based measurements, and water 

vapor radiometers (WVRs). Radiosondes measure PWV from 0 to over 70 mm with an accuracy 

of approximately 2–5 mm RMSE, though performance varies in dry or cold conditions (Bevis et 

al. 1992). Satellite-based systems, like MODIS or COSMIC, cover 0–50+ mm with accuracies of 

4–10 mm RMSE for MODIS (King et al. 2003) and 0.2–7 mm for COSMIC (Kursinski et al. 

2008). WVRs measure PWV from ~2.5–50+ mm with 1–3 mm RMSE accuracy, but are sensitive 

to precipitation (Buehler et al. 2012). In fact, GNSS measurements have been shown to have an 

uncertainty of less than 2 mm of PWV, which is sufficiently accurate for weather forecasting and 

climate studies (Bock et al. 2007). This high accuracy, combined with the continuous nature of 

GNSS data, makes it an indispensable tool for storm prediction, particularly in rapidly changing 

weather conditions. 

1.8.6 Cost-Effective 

Using GNSS for meteorology is highly cost-effective because the GNSS infrastructure is already 

in place for navigation and positioning. Repurposing GNSS stations for atmospheric water vapor 

measurement requires minimal additional investment, primarily in the form of software and data 

processing capabilities. This makes GNSS a financially viable option for enhancing weather 

prediction systems, particularly in developing regions where the cost of deploying specialized 

meteorological equipment might be prohibitive (Gutman et al. 2004). 

In contrast, deploying radiosondes, LIDAR, or other specialized instruments involves significant 

costs for hardware, deployment, and maintenance, making GNSS a more attractive option for 

large-scale meteorological networks. 
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1.8.7 Integration with Multi-GNSS and Other Systems 

The use of multi-GNSS systems significantly improves the spatial and temporal resolution of water 

vapor measurements. By combining data from multiple satellite constellations (such as GPS, 

Galileo, GLONASS, and BeiDou), meteorologists can achieve better coverage and redundancy in 

their measurements (Casallas-García et al. 2023). This is particularly useful in regions where 

individual GNSS signals may be blocked or weakened by buildings, mountains, or other obstacles 

(Shoji et al. 2009). 

1.9. Literature Review 

Understanding the distribution and variability of atmospheric water vapor is crucial due to its 

significant role in weather phenomena, climate dynamics, and the Earth's energy balance. 

Integrated Water Vapor (IWV), or precipitable water, represents the total amount of water vapor 

present in a vertical column of the atmosphere. Accurate measurement and analysis of IWV are 

essential for weather forecasting, climate modeling, and studying atmospheric processes such as 

radiation balance, the hydrological cycle, energy transport, and global warming (Held & Soden, 

2000; Trenberth et al. 2005). Traditional methods of measuring atmospheric water vapor, such as 

radiosondes and microwave radiometers, have limitations in spatial and temporal resolution. The 

advent of Global Navigation Satellite Systems (GNSS) has revolutionized atmospheric sensing by 

providing high-resolution, continuous IWV data, opening new avenues for studying atmospheric 

processes, including the diurnal variations of IWV. 

The utilization of GNSS for atmospheric sensing began with the groundbreaking work of Bevis et 

al. (1992), who demonstrated that delays in GNSS signals caused by atmospheric water vapor 

could be quantified to estimate IWV accurately. This method involved measuring the Zenith Wet 

Delay (ZWD) experienced by GNSS signals as they pass through the atmosphere, which is directly 

related to the amount of water vapor along the signal path. Bevis et al.'s study laid the foundation 

for GNSS meteorology, providing a cost-effective and reliable alternative to traditional 

atmospheric water vapor measurement techniques. The high temporal resolution of GNSS 

observations allowed for continuous monitoring of IWV, capturing rapid changes in atmospheric 

moisture content that were previously undetectable. 
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Following this pioneering work, Rocken et al. (1993) and Duan et al. (1996) further validated the 

use of GNSS for IWV retrieval. They demonstrated that GNSS-derived IWV measurements were 

in good agreement with those obtained from radiosondes and microwave radiometers. The ability 

of GNSS to provide all-weather observations made it an invaluable tool for atmospheric studies, 

particularly in regions with sparse observational networks. Solheim et al. (1997) developed a 

multicomponent integrated water vapor sensing system that combined GNSS data with surface 

meteorological measurements, improving the accuracy of IWV estimations and enhancing the 

capability to monitor atmospheric water vapor in real-time. 

Throughout the late 1990s and early 2000s, significant advancements were made in refining 

GNSS-based IWV retrieval techniques. Rocken et al. (1993) highlighted the potential of GNSS in 

capturing diurnal variations of IWV, emphasizing its utility in studying atmospheric processes 

occurring over short timescales. By providing continuous data, GNSS enabled the detection of 

subtle changes in atmospheric moisture content associated with diurnal heating and cooling cycles. 

Liou et al. (2001) compared GNSS-derived IWV with microwave radiometer data, confirming the 

reliability of GNSS measurements. Wang and Zhang (2008) conducted comprehensive evaluations 

of GNSS IWV measurements over various climatic regions, demonstrating high correlations with 

radiosonde data. These studies established GNSS as a robust tool for atmospheric water vapor 

sensing. 

The accurate retrieval of IWV using GNSS facilitated a wide range of atmospheric applications. 

Flores et al. (2000) and Bender et al. (2011) utilized GNSS data to develop four-dimensional 

tomographic models of atmospheric water vapor (Champollion et al. 2005, Champollion et al. 

2009, Chen et al. 2017). This approach provided detailed insights into the spatial and temporal 

distribution of moisture in the atmosphere, enhancing the understanding of weather systems and 

climate processes. In monsoonal studies, Radhakrishna et al. (2019) employed GNSS-derived 

IWV to investigate the spatial coherence of water vapor and its relationship with rainfall over the 

Indian subcontinent, contributing to improved modeling of monsoon dynamics and precipitation 

patterns. Singh et al. (2019) integrated GNSS signal delay data into numerical weather prediction 

models, enhancing short-range weather forecasts over India by incorporating high-resolution IWV 

data to better represent atmospheric moisture fields. 
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1.9.1. Diurnal variation of IWV 

Continuous IWV probing capability by GNSS systems allowed several researchers to understand 

the diurnal variation of IWV and underlying mechanisms causing such variation. Dai et al. (2002) 

analyzed IWV over North America using data from 54 stations over four years, finding significant 

diurnal variations that varied spatially, with higher amplitudes in the western United States and 

subtropics. The phase of the diurnal cycle peaked around noon in winter and shifted from mid-

afternoon to midnight in summer. Their findings emphasized the importance of accounting for 

diurnal IWV variations in weather models to improve humidity measurements and forecasting 

accuracy. In Europe, Champollion et al. 2005) observed clear diurnal patterns influenced by 

atmospheric tides and regional meteorological conditions, attributing the variations to the 

superposition of semidiurnal and diurnal atmospheric tides and local convective processes. 

Similarly, Bock et al. (2007) studied the diurnal cycle over Africa, revealing strong variations 

associated with atmospheric waves and convection, particularly over the Sahel region during the 

monsoon season. Li et al. (2015) analyzed diurnal IWV variations over the Tibetan Plateau, finding 

significant diurnal cycles with peaks in the late afternoon influenced by thermal convection and 

large-scale circulation. The elevated terrain enhances thermal contrasts, leading to pronounced 

diurnal variations. 

Subedi et al. (2023) examined the diurnal and seasonal variation of IWV over Nepal, observing 

late afternoon peaks and early morning minima influenced by monsoonal activity and local 

topography. In Russia's Volga-Ural region, Kalinnikov and Khutorova (2017) found that the 

diurnal harmonic phase occurred between 14:00 and 17:00 local time, strongly influenced by 

surface air temperature in summer. Ortiz de Galisteo et al. (2011) studied diurnal cycles in Spain, 

finding that nighttime IWV variations were more similar across stations compared to afternoon 

variations, suggesting significant local effects during daytime. Wu et al. (2003) investigated the 

diurnal variation of IWV over a mountainous area on Sumatra Island, observing a distinct pattern 

with IWV increasing during the day and peaking in the late afternoon, attributed to thermally 

induced local circulations and convective processes. Torri et al. (2019) extended this research by 

analyzing the impact of the Madden-Julian Oscillation (MJO) on diurnal cycles, finding significant 

effects on amplitude and peak IWV times. Li et al. (2008) examined diurnal variations in central 

Japan, finding that moisture advection and sea breeze circulations were key factors influencing the 
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variations. Meza et al. (2020) analyzed diurnal IWV variations over Central and South America, 

finding stronger variations over land due to local topography and land-sea interactions. 

Radhakrishna et al. (2015) studied the diurnal variation over the continental United States, 

highlighting the influence of topography and large-scale circulation patterns. 

Despite global interest, studies focusing on the diurnal variation of IWV in India, particularly in 

semi-arid regions, are limited. Emmanuel et al. (2018) analyzed the diurnal variation over Gadanki 

and Trivandrum using radiosonde observations, noting limitations due to poor temporal resolution. 

Renju et al. (2015) investigated seasonal and diurnal variations using GPS data, observing 

significant diurnal cycles influenced by monsoon activity and surface heating. Jadala et al. 2020) 

focused on Hyderabad, finding strong diurnal harmonics and a positive correlation between IWV 

and surface temperature. Kannemadugu et al. (2022) investigated diurnal variations across 18 

stations in India, noting that the variations were not uniform and depended on seasons and 

locations. For semi-arid locations like Hyderabad and Bangalore, noticeable phase lags between 

seasons were observed, emphasizing the influence of local topography and monsoonal winds. 

Researchers studied diurnal and seasonal variations over the Indian subcontinent, finding more 

pronounced diurnal variations during the monsoon season due to increased moisture influx and 

convective activities (Ratna et al. 2016; Diri et al. 2016). Barman et al. (2017) analyzed diurnal 

variations over Northeast India, finding distinct variations for each site due to complex terrain and 

varying monsoonal influences. 

The diurnal variation of IWV is influenced by several factors, including surface heating, local 

topography, land-sea interactions, moisture advection, atmospheric dynamics, convective 

processes, surface temperature, atmospheric tides, and monsoonal influences. Surface heating 

leads to increased evaporation and atmospheric moisture during the day (Meza et al. 2020). Local 

topography affects atmospheric circulation patterns, influencing moisture distribution (Wu et al. 

2003; Kannemadugu et al. 2022). Land-sea interactions introduce breeze circulations impacting 

IWV (Li et al. 2008). Moisture advection and atmospheric dynamics like the MJO (Torri et al. 

2019) also contribute to variations. Convective processes redistribute moisture vertically (Dai et 

al. 2002), and positive correlations between IWV and surface temperature indicate temperature's 

role (Jadala et al. 2020). Understanding these factors is essential for accurate modeling and 

prediction of IWV variations, particularly for weather forecasting and climate studies. 
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1.9.2 Nowcasting of storms: 

Recognizing water vapor's critical role in convective storm development, researchers explored the 

use of GNSS-derived IWV data for storm nowcasting. Sapucci et al. (2019) observed that sudden 

increases, or "jumps," in GNSS-derived IWV occurred before intense rain events in Brazil. They 

proposed using specific IWV thresholds as indicators of imminent heavy rainfall, offering potential 

improvements in early warning systems. Benevides et al. (2015) incorporated GNSS-IWV trends 

into rainfall nowcasting models, demonstrating enhanced forecast accuracy by utilizing real-time 

IWV observations to capture rapid atmospheric changes preceding precipitation events. Yao et al. 

(2017) developed a short-term rainfall forecasting method based on GNSS-derived IWV, achieving 

improved detection rates by analyzing parameters such as the magnitude, variation, and rate of 

change of IWV. In tropical regions, Manandhar et al. (2018) found that rapid increases in IWV 

were associated with imminent rainfall events, highlighting the potential for real-time applications 

in storm prediction. 

While GNSS-derived IWV data showed promise in storm nowcasting, challenges remained. High 

false alarm rates were observed when using IWV parameters alone (Yao et al. 2017; Manandhar 

et al. 2018), necessitating the integration of additional meteorological predictors to improve 

reliability. To address these challenges, hybrid models combining GNSS IWV data with other 

atmospheric parameters were developed. Guerova et al. (2022) created a "convective storm 

demonstrator" that integrated IWV measurements with instability indices derived from 

atmospheric profiles, achieving an 83% predictability and reduced false alarms. This model 

demonstrated the benefits of a multi-parameter approach. Benevides et al. (2019) employed neural 

networks to merge satellite-derived cloud top temperatures, IWV, and meteorological sensor data, 

enhancing rainfall forecasting accuracy. Zhao et al. (2020) incorporated GNSS-derived 

precipitable water vapor and meteorological data using support vector machines, improving 

detection rates and reducing false alarms compared to traditional threshold-based methods. 

1.9.3 Usage of AI/ML techniques for nowcasting 

Advancements in artificial intelligence (AI) and machine learning (ML) have further opened new 

avenues for analyzing complex atmospheric data and improving storm prediction. ML models can 

handle large datasets with multiple variables, identifying patterns that may not be apparent through 

traditional statistical methods (Wu et al. 2023). Suparta and Alhasa (2016) applied adaptive neuro-
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fuzzy inference systems to model precipitable water vapor in the absence of a GPS network, 

demonstrating the potential of ML in regions with limited observational infrastructure. Łoś et al. 

(2020) developed a GNSS-based machine learning storm nowcasting system that integrated GNSS 

IWV data with meteorological parameters to predict convective storms. The system demonstrated 

the potential of AI in meteorological applications, reducing false alarms and improving forecast 

reliability. Mostajabi et al. (2019) used ML techniques to nowcast lightning occurrence from 

commonly available meteorological parameters, enhancing prediction capabilities for severe 

weather warnings. Feng et al. (2021) applied deep learning methods for precipitation nowcasting, 

showing significant improvements over numerical weather prediction models by capturing spatial-

temporal patterns in radar and satellite data. 

The integration of GNSS-derived IWV data with machine learning techniques holds significant 

potential for advancing storm prediction and atmospheric research. However, challenges remain, 

including data quality and availability, model generalization across different climatic regions, and 

the computational resources required for advanced ML models (Chen et al. 2020; Feng et al. 2021). 

Addressing these challenges is essential for leveraging the full potential of GNSS and ML 

technologies in atmospheric sciences. 

1.10 Research Gaps  

Despite significant advancements, several research gaps remain: 

a. Most studies focus on real-time monitoring or nowcasting with minimal lead time. There is a 

lack of research on utilising GNSS-derived IWV to predict storms before they occur, 

providing sufficient lead time for early warning systems and disaster preparedness. 

b. While AI/ML techniques have been applied using traditional meteorological data, their 

integration with GNSS-derived IWV data remains underexplored. Utilizing AI/ML models to 

analyze IWV variations could enhance the accuracy and lead time of storm predictions. 

c. Traditional nowcasting techniques predominantly rely on instability indices estimated from 

radiosonde data, which have limited temporal resolution. Incorporating high-resolution IWV 

data could improve nowcasting models. 



29 
 

d. Radar-based nowcasting can result in high false alarm rates due to the temporal evolution of 

storms. Satellite observations may lead to false positives as not all growing clouds develop 

into storms. 

e. There is a paucity of research focused on predicting storms before they occur, especially with 

lead times sufficient for proactive measures and public safety interventions. 

f. Integrating multiple data sources—such as GNSS-derived IWV, radar, satellite imagery, and 

surface observations—could enhance storm prediction accuracy. Developing models that 

effectively combine these datasets, particularly using AI/ML techniques, is a key research 

area. 

g. Most research has been conducted in regions with dense observational networks. Studies 

focused on regions like India and other semi-arid areas are needed to improve understanding 

and prediction of storm events in diverse climatic conditions. 

1.11 Objectives of the Thesis 

Based on the research gaps identified—specifically, the limited utilization of GNSS-derived 

Integrated Water Vapor (IWV) for early storm prediction, the underexplored integration of 

Artificial Intelligence (AI) and Machine Learning (ML) techniques with IWV data, and the 

reliance on traditional nowcasting methods with inherent limitations—this thesis aims to address 

these challenges through the following objectives 

1. Understanding the Diurnal Cycle of IWV 

2. Prediction of IWV Using AI/ML Techniques 

3. Nowcasting of Storms Using Predicted IWV with ML Techniques 

4. Evaluation of ML-Based Storm Nowcasting Techniques 

1.12 Thesis Overview 

Building upon the identified research gaps and objectives, this thesis is structured to systematically 

explore and address the challenges in predicting storms in advance using GNSS-derived Integrated 

Water Vapor (IWV) data and machine learning techniques. The following is a summary of each 

chapter, incorporating the specific focus and methodologies as per your instructions. 

Chapter 2 provides a comprehensive description of the data sources and methodologies employed 

throughout the research. It details the collection and processing of GNSS-derived IWV data from 
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a network of seven receivers in Gadanki, India, over a three-year period (September 2018 to 

August 2021). The chapter outlines the acquisition of satellite brightness temperature data and 

other relevant meteorological observations necessary for the study. It discusses the preprocessing 

steps, including quality control measures and handling of missing or outlier data, ensuring the 

reliability of the datasets used. The methodologies for harmonic analysis of IWV, development of 

machine learning models and threshold-based hybrid modeling are introduced. This chapter sets 

the foundation for the analyses conducted in subsequent chapters, providing the necessary 

background on the tools and techniques employed. 

In chapter 3, the focus is on investigating the factors responsible for the diurnal variability of IWV 

in the Gadanki. Utilizing the GNSS-derived IWV data collected over three years, a detailed 

harmonic analysis is performed to determine the significant diurnal and semi-diurnal components. 

The study finds that the diurnal (24-hour) harmonic is significant 93% of the time, while the semi-

diurnal (12-hour) harmonic is significant 36% of the time. Seasonal and monthly variations in the 

amplitudes and phases of these harmonics are examined, revealing that diurnal amplitudes of 2–3 

mm and semi-diurnal amplitudes of 1.5–2 mm are most common across all seasons. The analysis 

identifies two distinct semi-diurnal cycles with different peak times. Importantly, the research 

discovers that the vertically integrated moisture flux convergence (VIMFC), representing the 

transport term of IWV, is the primary factor determining the diurnal cycle of IWV at both seasonal 

and diurnal scales. This chapter provides critical insights into the atmospheric processes 

influencing IWV variations, which are essential for improving weather prediction models and 

understanding the moisture dynamics in semi-arid regions. 

Building upon the understanding of IWV variability, chapter 4 focuses on developing a machine 

learning technique to predict IWV, aiming to enhance the nowcasting of storm events. Specifically, 

the Light Gradient Boosting Machine (LightGBM) algorithm is employed due to its efficiency and 

accuracy with large datasets and its ability to handle complex non-linear relationships. The model 

is trained using the IWV data from Gadanki, along with relevant meteorological parameters such 

as temperature, humidity, and wind speed. The predictive capability of the model is thoroughly 

evaluated, demonstrating its effectiveness in forecasting IWV values. By accurately predicting 

IWV, the model provides crucial information for anticipating atmospheric changes that precede 

storm development, thereby contributing to improved early warning systems. 
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In chapter 5, the predicted IWV values obtained from the LightGBM model are utilized in 

conjunction with satellite-derived brightness temperature data to develop a hybrid model for storm 

prediction. This two-step process involves integrating the nowcasted IWV with satellite 

observations through threshold analysis to predict storms at different time horizons. The hybrid 

model uses the strengths of both data sources: the temporal precision of IWV predictions and the 

satellite-based brightness temperature. Thresholds are determined based on historical storm events 

to identify critical values indicative of storm formation. The chapter details the methodology for 

combining these datasets, the development of the threshold-based predictive model, and the 

evaluation of its performance. Results indicate that the hybrid model enhances the accuracy and 

lead time of storm forecasts compared to traditional nowcasting methods, offering a practical 

approach for operational meteorology. 

Expanding on the hybrid approach, chapter 6 explores the use of a standalone machine learning-

based model to nowcast storms in advance. The model incorporates GNSS-derived IWV, satellite 

brightness temperature, and additional meteorological data to predict storm events without relying 

solely on threshold analysis. Advanced machine learning algorithms, such as ensemble methods 

and deep learning techniques, are applied to capture the complex interactions among these 

variables. The model is trained and validated using historical data, and its performance is compared 

against both the hybrid model from Chapter 5 and traditional nowcasting techniques. The 

standalone ML model demonstrates improved prediction accuracy and reduced false alarm rates, 

highlighting its potential for practical implementation in early warning systems. The chapter 

discusses the advantages of this approach, including its adaptability to different regions and 

conditions, and addresses potential limitations related to data availability and computational 

requirements. 

The final chapter 7 summarizes the key findings and contributions of the thesis. It reflects on how 

the research objectives were achieved, emphasizing the advancements made in understanding the 

diurnal cycle of IWV, the development of machine learning techniques for IWV prediction, and 

the improvement of storm nowcasting methods using both hybrid and standalone models. The 

limitations of the study are acknowledged, such as the reliance on data from a single region and 

potential challenges in generalizing the models to other areas. Recommendations for future 

research are proposed, including exploring additional data sources like radar observations, refining 
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the models for different climatic regions, and investigating the integration of real-time data streams 

for operational use. The chapter concludes with final remarks on the impact of the research and its 

potential to enhance early warning systems and disaster preparedness in semi-arid regions and 

beyond. 
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This study primarily uses a network of GNSS receiver measurements augmented by INSAT-3D 

and automatic weather station (AWS) measurements at Gadanki. In this chapter, a brief description 

on the above data sets and study region is provided. The GNSS-based retrieval method provides 

high temporal resolution and accuracy, enabling continuous monitoring of atmospheric water 

vapor. The data collection period, preprocessing steps, and quality control measures are explained 

to ensure the reliability of the datasets used in the subsequent analyses. Different analysis methods 

are also included in this chapter, like harmonic analysis for determining main modes of IWV 

variability, machine learning techniques for IWV prediction, and hybrid modeling approaches for 

storm nowcasting.  

2.1 Datasets 

2.1.1 NARL’s Integrated GNSS Receiver and AWS Network 

The National Atmospheric Research Laboratory (NARL) established an integrated network of 

GNSS receivers (and AWS) within an 6-8 km radius around Gadanki, India, in 2018, specifically 

to study atmospheric water vapor, which is crucial for understanding weather and climate 

dynamics (Bevis et al. 1992, Anthes et al. 2008, Anthes et al. 2000).  

 

Figure 2.1: (a) GNSS receiver network surrounding Gadanki, (b) A standalone GNSS receiver 

(resembling a flat plane), with a collocated AWS receiver AWS receiver on the left side. 

 

The seven stations are strategically located at Gadanki, Kavalavari Palli, Balakrishnapuram, 

Arigalavari Palli, Pedha Gorapadu, Thotapalli, and Ganugapenta, as shown in Figure 2.1(a), with 

detailed station information provided in Table 2.1. 
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Table 2.1: Position Information of GNSS receiver stations of GNSS Network around Gadanki.  

Station Name Latitude Longitude Altitude (in m) 

Gadanki 13.460777 79.173229 246.239 

Kavalavari Palli 13.410932 79.179656 300.026 

Balakrishnapuram 13.435176 79.245098 290.638 

Arigalavari Palli 13.493126 79.214549 199.744 

Pedha Gorapadu 13.467129 79.11684 293.89 

Thotapalli 13.429995 79.128733 270.947 

Ganugapenta 13.504319 79.147499 345.99 

 

This network plays a crucial role in providing high-resolution, continuous monitoring of 

atmospheric water vapor in the region. The study utilized GNSS data from the NARL network, 

with a temporal resolution of 15 min, 30 min, collected over a three-year period from September 

2018 to August 2021. The raw GNSS data, recorded at 1-second intervals, were analyzed using 

the GAMIT software package to estimate Integrated Water Vapor (IWV), following established 

GNSS meteorology procedures (Ware et al. 1997). For processing, precise final ephemeris data 

from the International GNSS Service (IGS) and the Vienna Mapping Function (VMF) were used 

to estimate the Zenith Total Delay (ZTD), which was then converted to IWV (Boehm et al. 2006). 

The conversion required meteorological parameters, such as surface pressure and temperature, 

which were collected using Automatic Weather Stations (AWS) integrated with each GNSS 

receiver. The AWS data, available at a 30-second resolution, were averaged over 30-minute 

intervals before being used in GAMIT processing (Rocken et al. 1993). 

The AWS used in this study is all-in-one type manufactured by Vaisala (WXT536), which provides 

basic meteorological parameters: temperature, humidity, wind speed, wind direction, pressure and 

rainfall. 
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2.1.2 Other Data Sources 

Along with GNSS-derived Integrated Water Vapor (IWV) data, this research also utilizes 

additional data sources to provide a comprehensive understanding of the atmospheric variables 

that influence IWV. These data sources contribute to a holistic analysis of moisture dynamics, 

atmospheric processes, and storm prediction. 

2.1.2.1 ERA5 for Vertically Integrated Moisture Flux (VIMF) and Divergence 

To analyze the transport mechanisms and sources influencing atmospheric moisture, we utilized 

ERA5 reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF). 

ERA5 provides high-resolution global data, which includes vertically integrated moisture flux 

(VIMF) and its divergence (Hersbach et al. 2020). The VIMF represents the net movement of 

water vapor through the atmosphere, which is crucial for understanding changes in IWV. By 

integrating ERA5 data with GNSS-derived IWV estimates, we are able to determine how moisture 

advection and convergence influence the diurnal variations of IWV over Gadanki.  

2.1.2.2 Fifty-Metre Flux Tower for Soil Moisture Retrieval 

To study the influence of soil moisture on atmospheric water vapor, we used data from a 50-metre 

flux tower located at Gadanki. This tower provides crucial surface measurements, including soil 

moisture, temperature, latent and sensible heat fluxes, and surface winds (Sandeep et al. 2014). 

Soil moisture data are particularly important in understanding evapotranspiration and how it affects 

atmospheric water vapor content.  

2.1.2.3 INSAT 3DR Satellite-Based Brightness Temperature Data 

We also utilized satellite-based brightness temperature (Tb) data from the INSAT 3DR satellite, an 

advanced meteorological satellite that provides infrared and thermal data crucial for monitoring 

atmospheric conditions (Murugavel et al. 2019). Tb data serve as a proxy for cloud top 

temperatures, which are critical for identifying convective activities that may lead to storm 

development.  

2.1.2.4 X-Band Dual-Polarization Radar Data 

We also used X-band dual-polarization radar data, which is located at Gadanki, to identify and 

track storm events in real-time. The radar provides high temporal resolution observations and dual-

polarization capabilities are useful for detailed analysis of precipitation, storm structure, and 
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hydrometeor classification (Ryzhkov et al. 2016). The dual-polarization feature helps distinguish 

different types of precipitation and track the evolution of storm systems.  

2.2 Methodology 

2.2.1 Retrieval of IWV from GNSS 

GNSS consists of multiple satellites in medium Earth orbits, ground control stations, and user 

receivers that together enable precise positioning and timing measurements. GNSS signals are 

transmitted from satellites and received by ground-based GNSS receivers. As these signals travel 

through the atmosphere, they are subject to delays due to interactions with the medium in different 

atmospheric layers, primarily the ionosphere and troposphere. The GNSS signal delay caused by 

the troposphere is used in this study to estimate IWV, which is an important measure of the total 

atmospheric moisture in a vertical column (Bevis et al. 1992; Ware et al. 1997). 

 

Figure 2.2: Diagram illustrating the movement of GNSS signals through the atmosphere. 

2.2.1.1 GNSS Signal Delays and the Role of the Atmosphere 

The use of GNSS to retrieve atmospheric water vapor involves taking advantage of the propagation 

delays that occur as the signal passes through the atmosphere. The primary atmospheric delays 

include ionospheric delay and tropospheric delay. The tropospheric delay, in turn, is composed of 

two components: the hydrostatic (or dry) delay and the wet delay. The wet delay is directly related 

to the atmospheric water vapor content, which is what we aim to estimate. 



38 
 

The total delay experienced by the GNSS signal as it travels from the satellite to the receiver can 

be expressed as: 

𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑙𝑎𝑦 = 𝐼𝑜𝑛𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝐷𝑒𝑙𝑎𝑦 + 𝑇𝑟𝑜𝑝𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝐷𝑒𝑙𝑎𝑦  (2.1) 

The ionosphere is a region of the atmosphere containing free electrons, and it causes signal 

refraction and delays that are frequency-dependent. The ionospheric delay (Δtiono) is inversely 

proportional to the square of the signal frequency (𝑓), (as shown in the equation below), and 

hence it can be mitigated using dual-frequency GNSS observations. 

𝛥𝑡𝑖𝑜𝑛𝑜 =
40.3 × 𝑇𝐸𝐶

𝑓2
 

(2.2) 

Where the constant 40.3 in the equation represents a scaling factor used to calculate the ionospheric 

delay. 𝑇𝐸𝐶 is the Total Electron Content along the signal path, measured in electrons per square 

meter and f is the frequency of the GNSS signal, measured in Hz. 

GNSS satellites transmit signals on two frequencies (L1 and L2), and by combining these dual-

frequency signals, we can effectively eliminate the ionospheric delay. This approach significantly 

improves the precision of GNSS-derived atmospheric products, including ZTD (Kouba & Héroux, 

2001). 

The tropospheric delay, which is independent of signal frequency, contains valuable information 

about atmospheric moisture. It can be represented as: 

𝑇𝑟𝑜𝑝𝑜𝑠ℎ𝑝𝑒𝑟𝑖𝑐 𝐷𝑒𝑙𝑎𝑦 = 𝐻𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 𝐷𝑒𝑙𝑎𝑦 + 𝑊𝑒𝑡 𝐷𝑒𝑙𝑎𝑦 (2.3) 

(a)  Hydrostatic Delay (ZHD): This component is mainly due to dry gases in the atmosphere and 

accounts for approximately 90% of the total tropospheric delay. 

(b)  Wet Delay (ZWD): This component arises from atmospheric water vapor and is the most 

variable. It is directly proportional to the amount of water vapor in the atmosphere and is used for 

IWV estimation. 
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2.2.1.2 Estimation of Zenith Total Delay (ZTD) 

Once the ionospheric delay is eliminated, the next step is to estimate the Zenith Total Delay (ZTD) 

from the GNSS signal. The ZTD represents the delay experienced by the signal in the zenith 

direction and can be estimated using precise point positioning (PPP) or network processing 

techniques. For this study, the raw GNSS data recorded at 1-second intervals were processed using 

the GAMIT software package, which is widely used for GNSS data analysis and atmospheric 

parameter estimation (Herring et al. 2010). GAMIT uses precise satellite orbits and clock 

corrections, final ephemeris data from the International GNSS Service (IGS), and the Vienna 

Mapping Function (VMF) to estimate ZTD. ZHD can be accurately estimated using models such 

as the Saastamoinen model, which takes into account surface pressure (Ps) and latitude (𝜙): 

𝑍𝐻𝐷 = 0.0022768 ×
𝑃𝑠

1 − 0.00266 cos(2ϕ) − 0.00028H
 

(2.4) 

Where H represents the height of the GNSS station above sea level in kilometers. Apart 

from this we have Hopfield model also to estimate ZHD. 

𝑍𝐻𝐷 =
10−6

5
∗ [40136 + 148.72 ∗ (𝑇𝑠 − 273.16)] ∗ 77.64 ∗

𝑃𝑠

𝑇𝑠
 (2.5) 

Where 𝑇𝑠 is surface temperature, and Ps is surface Pressure (Bevis et.al. 1992). 

2.2.1.3 Sensitivity Analysis of Hopfield and Saastamoinen Models for Estimating ZHD 

To check the sensitivity of both the model we have done the sensitivity analysis. Figure 2.3 

compares the Zenith Hydrostatic Delay (ZHD) estimated using the Hopfield and Saastamoinen 

models over Julian days 281 to 287. The Hopfield model (depicted in blue) and the Saastamoinen 

model (depicted in red) show close agreement overall, with both models capturing the variability 

in ZHD across the analyzed period. However, small deviations between the two models are 

observed, particularly during rapid changes in ZHD values. These differences may arise because 

of different assumptions for the two models.  
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Figure 2.3: A time series plot between Hopfield and Saastamoinen model for estimation of ZHD. 

2.2.1.4 Conversion of ZTD to IWV 

To estimate IWV, the ZWD must be converted into a measure of the total atmospheric water vapor. 

This conversion is achieved using the following equation: 

𝐼𝑊𝑉 = 𝛱 ⋅ 𝑍𝑊𝐷 (2.6) 

Where Π is the conversion factor, which depends on the temperature, pressure, and specific 

properties of the atmosphere. It can be expressed as: 

𝛱 =
𝜌𝑤 ⋅ 𝑅𝑑 ⋅ (

𝑘3

𝑇𝑚
+ 𝑘2

′ )

𝑅𝑤. (106)
 

(2.7) 

Where  𝜌𝑤 is the density of liquid water (typically 1000 kg/m³), 𝑅𝑑is the specific gas constant for 

dry air (287.05 J/(kgK), 𝑅𝑤 is the specific gas constant for water vapor (461.5 J/(kgK)), 𝑘3 and 𝑘2
′  

are empirically determined constants, 𝑇𝑚 is the mean temperature of the atmosphere, which can 

be estimated using surface temperature (𝑇𝑠 ) obtained from AWS data. 

The surface temperature and pressure data needed for conversion are collected from Automatic 

Weather Stations (AWS) integrated with the GNSS receivers. These meteorological data are 

available at a 30-second resolution and are averaged over 30-minute intervals before being used 

in the GAMIT processing. 
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2.2.1.5 Sensitivity Analysis of IWV Retrieval Using Vienna and Neill Mapping Functions  

To evaluate the sensitivity of Vienna and Neill mapping functions, we conducted a comparative 

analysis of their performance. The figure 2.4 shows a sensitivity analysis comparing two mapping 

functions—Vienna Mapping Function (VMF) and Neill Mapping Function (NMF) for IWV 

retrieval. The analysis spans Julian days 174 to 179, with IWV values measured in millimeters 

(mm). The IWV values derived using the VMF (shown as a red dashed line) closely align with 

those obtained using the NMF (depicted by a solid blue line). Both mapping functions exhibit 

similar temporal variability and capture the peaks and troughs of IWV with high consistency. 

However, slight deviations are observed at specific peaks, indicating subtle differences in 

sensitivity to the atmospheric conditions. The overall agreement suggests that both mapping 

functions are robust for IWV estimation, though the choice of mapping function may lead to minor 

variations in extreme IWV values. 

 

Figure 2.4: Sensitivity Analysis of IWV Retrieval Using Vienna and Neill Mapping Functions. 

2.2.1.6 Sensitivity of IWV Retrieval to Temporal Resolution Using GAMIT 

The sensitivity analysis of IWV retrieval to different temporal resolutions was conducted to 

understand the impact of varying time intervals on the accuracy and variability of IWV 

measurements. This analysis is crucial because the temporal resolution directly influences the 
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ability to capture rapid changes in atmospheric water vapor, which is essential for studying 

dynamic weather phenomena such as storms and heavy rainfall events. By evaluating IWV 

retrievals at different time horizons (15, 30, 60 and 120 minutes), we aimed to determine the 

optimal temporal resolution that balances capturing short-term variability and computational 

efficiency. Figure 2.5 shows IWV estimated with different averaging periods. At finer resolutions 

(15 and 30 minutes), the blue and orange lines exhibit higher variability and capture rapid 

fluctuations in IWV, particularly during dynamic weather conditions. In contrast, coarser temporal 

resolutions (60 and 120 minutes, represented by the green and red lines) appear smoother, as short-

term variations are averaged out. This smoothing effect is especially evident in the later stages 

(around Julian days 278–280), where finer resolutions detect sharper declines in IWV compared 

to the coarser ones. This analysis underscores the importance of temporal resolution in IWV 

retrievals, particularly for capturing short-term variations and rapid changes in atmospheric water 

vapor.  

 

Figure 2.5: Sensitivity analysis of IWV Retrieval to Temporal Resolution. 
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2.2.1.7 Validation of GNSS-Derived IWV 

The accuracy of GNSS-derived IWV is assessed by comparing it against independent radiosonde 

measurements made at Gadanki (Figure 2.6) . Radiosondes provide vertical profiles of atmospheric 

parameters, including temperature, pressure, and humidity, which can be used to estimate IWV. In 

this study, a high correlation coefficient (0.97) was observed between GNSS-derived IWV and 

Radiosonde-derived IWV, with a bias of 3.24 mm and a root mean square error (RMSE) of 2.86 

mm. This high level of agreement demonstrates the reliability of GNSS- derived IWV for further 

analyses of atmospheric water vapor variability and storm prediction. 

 

 

 

 

 

 

 

Figure 2.6: Temporal variation of IWV retrieved from GNSS receiver measurements and their 

comparison with those obtained with radiosonde. 

2.2.2 Harmonic Analysis 

To analyze the diurnal variability of Integrated Water Vapor (IWV), harmonic analysis is applied 

to capture the periodic components of IWV fluctuations over the study region. This analysis allows 

us to identify which harmonic components, such as the diurnal (24-hour) or semi-diurnal (12-hour) 

cycles, are dominant in the IWV data. The approach focuses on understanding the key patterns and 

factors that drive the diurnal changes in IWV. 

2.2.2.1 Data Averaging and Diurnal Anomaly Calculation 

Initially, the IWV data from all seven GNSS stations (located at Gadanki, Kavalavari Palli, 

Balakrishnapuram, Arigalavari Palli, Pedha Gorapadu, Thotapalli, and Ganugapenta) are averaged 

to represent the regional variation in IWV, rather than focusing on local variations at a single site. 
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Averaging the IWV from all stations helps in eliminating small-scale local effects and enhances 

the signal representing the broader regional atmospheric moisture. 

Once the regional IWV values are obtained, diurnal anomalies are calculated by subtracting the 

daily mean IWV from each hourly IWV value for each day. This subtraction removes the daily 

average variability, allowing us to focus specifically on the diurnal patterns and deviations from 

the daily average. The resulting diurnal anomalies provide insights into the intraday changes in 

IWV, which can be crucial for understanding the processes driving moisture dynamics. The diurnal 

anomalies are further averaged for each of the four seasons observed in India (Attri & Tyagi ,2010) 

, defined as: 

• Winter: January and February 

• Pre-Monsoon: March, April, and May 

• Monsoon: June, July, August, and September 

• Post-Monsoon: October, November, and December 

The seasonal averaging helps in highlighting how the diurnal cycle of IWV varies across different 

times of the year, providing insights into the influence of seasonal changes, such as monsoonal 

circulation and thermal convection, on atmospheric moisture. 

2.2.2.2 Harmonic Analysis Method  

To quantify the periodic components of the IWV diurnal variability, harmonic analysis is 

conducted on the diurnal and seasonal diurnal anomalies. Harmonic analysis allows us to represent 

the time series of IWV anomalies in terms of sinusoidal functions, capturing the most significant 

periodic variations. The goal is to determine the amplitude and phase of the dominant harmonics, 

specifically focusing on the diurnal (24-hour) and semi-diurnal (12-hour) components. The diurnal 

anomalies are modeled using the following equation: 

𝐼𝑊𝑉(𝑡) = ∑ (𝑎𝑛 sin
2𝑛𝜋𝑡

24
+ 𝑏𝑛 cos

2𝑛𝜋𝑡

24
)

2

𝑛=1

+ ϵ 

(2.8) 

Where: 
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• n=1,2: Represents the harmonic components with periods of 24 hours (diurnal) and 12 

hours (semi-diurnal), respectively. 

• an: Coefficient representing the sine component for the n-th harmonic. 

• bn: Coefficient representing the cosine component for the n-th harmonic. 

• t: Time in hours, expressed in Coordinated Universal Time (UTC). 

• ϵ: Represents higher-order harmonics and other non-periodic components. 

The above equation can also be expressed in a simplified form: 

𝐼𝑊𝑉(𝑡) = 𝐴𝑛sin (
2πnt

24
+ σ𝑛 ) 

(2.9) 

Where 𝐴𝑛 = 𝑠𝑞𝑟𝑡 {𝑎𝑛
2 +  𝑏𝑛

2} : Represents the amplitude of the n-th harmonic and 𝛔𝒏  Represents 

the phase shift of the n-th harmonic. 

The amplitude 𝐴𝑛indicates the strength of the harmonic component, while the phase σ𝑛  determines 

the timing of the maximum IWV for the given harmonic. The phase can also be translated into the 

time of day when the IWV reaches its peak, denoted as 𝑃𝑛: 

𝑃𝑛 =
(

𝜋
2 − 𝜎𝑛) ⋅ 12

𝜋𝑛
 

(2.10) 

The value 12 in the equation converts the phase σn from radians to hours within a 24-hour diurnal 

cycle for the nth harmonic, where 12/π maps 2π radians to 24 hours, scaled by n. This equation 

allows us to determine the time of maximum IWV for each harmonic, giving a more intuitive 

understanding of when the peak diurnal and semi-diurnal variations occur throughout the day. The 

time is always expressed in Coordinated Universal Time (UTC) to maintain consistency and 

facilitate comparison with other studies and global observations. 

2.2.3 Fisher’s Significance Test 

Fisher's significance test is a widely used statistical method in harmonic analysis to determine 

whether or not the amplitudes and phases of the Fourier series coefficients are statistically 
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significant. In the context of this study, Fisher's test is employed to verify whether the observed 

harmonics (i.e., the diurnal and semi-diurnal components) are significant or not.  

Fisher's significance test is applied to the time series after computing the harmonic components. 

The test statistic is calculated as follows: 

𝐹 =

1
2

(𝑎𝑛
2 +  𝑏𝑛

2)

𝜎2

𝑁

 

(2.11) 

Where: 

• F: Fisher's test statistic. 

• an and bn: Fourier series coefficients for the n-th harmonic. 

• 𝜎2: Variance of the residuals, which represents the part of the time series not explained by 

the harmonic model. 

• N: Number of data points in the time series. 

The calculated F value is compared to a critical value from the Fisher distribution table, which 

depends on the degrees of freedom and the significance level (α), typically set at 0.05. If the 

calculated F value is greater than the critical value, the null hypothesis that the harmonic has no 

real contribution to the signal can be rejected. This indicates that the harmonic component is 

statistically significant and contributes to the observed variability in IWV. 

2.2.4 Vertically Integrated Moisture Flux Convergence 

The diurnal cycle of Integrated Water Vapor (IWV) is influenced by various factors, including 

evaporation, condensation, land/sea breeze circulation, precipitation, the region's orography, and 

moisture advection. To examine how moisture advection affects the diurnal variation of IWV, the 

Vertically Integrated Moisture Flux Convergence (VIMFC) has been analyzed using wind and 

specific humidity data from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) Reanalysis Fifth Generation (ERA5) dataset over a four-year period (2018-2021). The 

VIMFC represents the net convergence or divergence of atmospheric moisture over a given 



47 
 

location, providing insights into the contribution of horizontal moisture transport to IWV 

variability. 

2.2.4.1 Estimation of VIMFC 

VIMFC is calculated from wind components (u and v) and specific humidity (q) using the 

following formula: 

𝑉𝐼𝑀𝐹𝐶 =
1

𝑔
∫ (

∂(uq)

∂x
+

∂(vq)

∂y
) 𝑑𝑝

𝑝𝑡

𝑝𝑠

 
(2.12) 

Where: 

q: Specific humidity (kg/kg). 

• u, v: Zonal and meridional wind components (m/s), respectively. 

• ps: Surface pressure (hPa). 

• pt: Pressure at the top of the atmospheric layer (typically set to 300 hPa in this study). 

• g: Acceleration due to gravity (9.81 m/s). 

• (
∂(uq)

∂x
,

∂(vq)

∂y
): Horizontal gradients of moisture flux, representing moisture advection. 

The VIMFC provides a measure of the amount of moisture convergence or divergence per unit 

area over a given period. 

The resulting VIMFC values represent the net effect of moisture convergence or divergence over 

the column extending from the surface to 300 hPa. 

2.2.4.1.1 Positive VIMFC: Indicates moisture convergence, meaning that water vapor is 

accumulating in the column. This often leads to an increase in IWV and is indicative of conditions 

favorable for cloud formation and possibly precipitation. High positive VIMFC values represent 

strong convergence, which can be associated with convective activity and storm development. 

2.2.4.1.2 Negative VIMFC: Indicates moisture divergence, meaning that water vapor is moving 

away from the column. This results in a decrease in IWV and can indicate subsidence or drying 
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conditions. High negative values represent strong divergence, often linked to clear skies and stable 

atmospheric conditions. 

2.2.5 Used Machine Learning Methods 

2.2.5.1 Light GBM  

LightGBM (Ke et al. 2017) is a powerful gradient boosting framework that builds multiple 

decision trees sequentially. Each tree is trained to minimize the residual errors from the previous 

trees, ultimately forming a robust model for regression tasks.  

Mathematical Description: The prediction from LightGBM is based on an ensemble of decision 

trees, which is represented as: 

𝑓(𝑥) =  ∑ 𝑇𝑚(𝑥)

𝑀

{𝑚=1}

 

(2.13) 

Where: 

• f(x): The final predicted value for input feature vector x. 

• M: The total number of decision trees. 

• Tm(x): The prediction from the m-th tree. 

The objective of LightGBM is to minimize the loss function, which consists of a fitting error term 

l(yi,f(xi)) and a regularization term Ω(Tm) to control overfitting: 

𝐿(𝑦, �̂�) =  ∑ 𝑙(𝑦𝑖, 𝑓(𝑥𝑖))

𝑛

{𝑖=1}

+ ∑ Ω(𝑇𝑚)

𝑀

{𝑚=1}

 

(2.14) 

Where: 

• l(yi,f(xi)): The loss for each training instance, typically the Mean Squared Error (MSE) for 

regression tasks. 
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𝑙(𝑦𝑖, 𝑓(𝑥𝑖)) =  (𝑦𝑖 −  𝑓(𝑥𝑖))
2
 

 

(2.15) 

• Ω(Tm): The regularization term, which controls the complexity of each tree and helps 

prevent overfitting. 

LightGBM uses gradient boosting to optimize this objective, building trees that iteratively 

minimize the error. 

2.2.5.2 Storm Nowcasting Using Classification Models 

In Chapter 6, several classification models including LightGBM, Logistic Regression, Random 

Forest, XGBoost, CatBoost, and Artificial Neural Networks (ANNs)—are used for storm 

classification. Each model has its unique way of addressing classification tasks. Here’s a detailed 

look at each: 

2.2.5.2.1 Logistic Regression  

Logistic regression is a linear model that predicts the probability of a binary outcome using the 

logistic function (Hosmer et al. 2013): 

𝑝 =
1

1 +  𝑒{−𝑧}
 

(2.16) 

Where: 

𝑧 =  𝑤0 +  ∑ 𝑤𝑖𝑥𝑖

𝑛

{𝑖=1}

 
(2.17) 

• 𝑤0: Intercept term. 

• 𝑤𝑖 Coefficients for the features 𝑥𝑖. 
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The model is trained using the same binary cross-entropy loss as LightGBM, with the objective of 

maximizing the likelihood of correct predictions. 

2.2.5.2.2 Random Forest  

Random Forest is an ensemble learning method that builds multiple decision trees using random 

subsets of data and features, and then aggregates their outputs (Breiman, 2001). 

For classification, the final prediction is determined by majority voting from all decision trees: 

𝑓(𝑥) = 𝑚𝑜𝑑𝑒{𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝑚(𝑥)} (2.18) 

Where: 

• 𝑇𝑚(𝑥): Prediction from the mmm-th decision tree. 

• 𝑓(𝑥): The final classification output. 

The advantage of Random Forest lies in its ability to reduce overfitting and improve generalization 

by averaging the results of multiple trees. 

2.2.5.2.3 Extreme Gradient Boosting (XGBoost)  

XGBoost is an optimized implementation of gradient boosting that uses a regularization term to 

enhance model generalizability. The model is built sequentially by adding decision trees that 

minimize the objective function (Chen & Guestrin, 2016): 

𝐿(𝜃) =  ∑ 𝑙(𝑦𝑖, 𝑦�̂�)

𝑛

{𝑖=1}

+ ∑ Ω(𝑓𝑚)

𝑀

{𝑚=1}

 

(2.19) 

Where: 

• 𝑙(𝑦𝑖, 𝑦�̂�): The loss function for each observation, typically binary cross-entropy for 

classification. 
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• Ω(𝑓𝑚): Regularization term, which includes terms to penalize the number of leaves and 

leaf weights, reducing overfitting. 

Each tree improves on the previous iteration by learning from the residual errors. 

2.2.5.2.4 CatBoost  

CatBoost builds gradient-boosted decision trees, designed specifically to handle categorical 

features efficiently. The model uses ordered boosting, which prevents overfitting by ensuring that 

each tree is built without data leakage from the current training instance (Dorogush et al. 2018). 

The objective function for CatBoost is similar to that of XGBoost: 

𝐿(𝜃) =  ∑ 𝑙(𝑦𝑖, 𝑦�̂�)

𝑛

{𝑖=1}

+  ∑ Ω(𝑓𝑚)

𝑀

{𝑚=1}

 

(2.20) 

 

Where: 

𝐿(𝜃) is Total loss function to minimize, with model parameters 𝜃, 𝑦𝑖 is True target value for 

sample i , 𝑦�̂� is predicted value for sample i and Ω(𝑓𝑚) is Penalty for tree complexity.  

The key advantage of CatBoost is its ability to handle categorical features without requiring 

extensive preprocessing, and the use of ordered boosting for stable training. 

2.2.5.2.5 Artificial Neural Networks (ANNs)  

ANNs are made up of interconnected layers of neurons that help to model complex relationships 

in the data. The feedforward calculation in an ANN is given by (Goodfellow et al. 2016): 

𝑧(𝑙) = 𝑊(𝑙)𝐴(𝑙−1) + 𝑏(𝑙) (2.21) 

𝐴(𝑙) = 𝑓(𝑧(𝑙)) (2.22) 

Where: 

• 𝑧(𝑙): The linear combination of weights, inputs, and biases for the 𝑙 -th layer. 

• 𝐴(𝑙): Activation output for the 𝑙 -th layer. 
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• 𝑊(𝑙): Weight matrix for layer 𝑙. 

• 𝑏(𝑙):Bias term for layer 𝑙. 

• 𝑓: Activation function (e.g., ReLU, sigmoid). 

The model is trained using backpropagation to minimize a loss function (typically binary cross-

entropy in classification tasks). 

2.2.5.3 Evaluation Metrics for Classification Models 

2.2.5.3.1 Area Under the Receiver Operating Characteristic Curve (AUC-ROC)  

The AUC-ROC measures the model's ability to distinguish between the positive and negative 

classes (storm vs. no storm). It plots the True Positive Rate (TPR) against the False Positive Rate 

(FPR) (Fawcett, 2006): 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(2.23) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

(2.24) 

The AUC value ranges between 0 and 1, where a higher value indicates better model 

discrimination. A value close to 1 indicates that the model is good at distinguishing between storm 

and non-storm events. 

2.2.5.3.2 Cohen's Kappa Score  

Cohen's Kappa measures the agreement between the predicted classifications and the actual labels, 

adjusted for chance agreement (Cohen, 1960): 

𝜅 =
𝑝𝑜 −  𝑝𝑒

1 −  𝑝𝑒
 (2.25) 

 

Where: 𝑝𝑜 is Observed agreement (i.e., the proportion of times the model and actual classifications 

agree). 𝑝𝑒 is Expected agreement by chance. 
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A Kappa score of 1 indicates perfect agreement, while a score of 0 suggests that agreement is no 

better than random. 

2.2.5.4 Evaluation Metrics for Prediction Outcomes 

The following metrics are also used to evaluate the prediction of storm events: 

2.2.5.4.1 Probability of Detection (POD) 

Measures the proportion of correctly detected storm events: 

𝑃𝑂𝐷 =
𝑑

𝑑 + 𝑐
× 100 

(2.26) 

Where: 𝑑 is True positives (correctly predicted storm events) and c: False negatives (missed storm 

events). 

2.2.5.4.2 False Alarm Rate (FAR)  

Measures the proportion of false alarms: 

𝐹𝐴𝑅 =
𝑏

𝑏 + 𝑑
× 100 

(2.27) 

Where: b is False positives (incorrectly predicted storm events) and d is True positives. 

2.2.5.4.3 Miss Rate 

Measures the proportion of missed storm events: 

𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒 =
𝑐

𝑐 + 𝑑
× 100 (2.28) 

2.2.5.4.4 Model Accuracy  

Measures the proportion of correctly predicted events (storm or no storm): 
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𝑀𝑜𝑑𝑒𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
× 100 

(2.29) 

Where a is True negatives (correctly predicted non-storm events), b is False positives, c is False 

negatives, d is True positives. 
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3.1 Introduction 

Numerous authors have analyzed the diurnal variations of IWV over different regions of the world 

using GNSS observations and attributed the variations to . For instance, Dai et al. (2002) studied 

the diurnal variation of IWV over North America using data from 54 stations over 4 years (1996-

2000). The study shows that the diurnal variation is significant and varies spatially, with higher 

amplitude in the western United States and the subtropics. The phase of the Diurnal cycle peaks 

around noon (100 -1400 LST) in winter, from midafternoon to midnight in summer, and for 

autumn a couple of hours earlier than in summer.   

Kalinnikov and Khutorva (2017) studied the diurnal variations of IWV over the Volga –Ural 

region of Russia from 16 GPS stations during 2013-2015.The diurnal harmonic phase for winter 

and summer falls within the period from 14:00 to 17:00. Ortiz de Galisto et al. (2011) studied 

annual and seasonal diurnal cycles at 10 stations over Spain for 7 years (2002-2008). They have 

found that both the annual and seasonal diurnal cycles at the different stations are similar to each 

other during the night than during the afternoon and the mechanisms changing the IWV are 

influenced more by local effects during the daytime than during the night. Their results also 

showed that the diurnal cycle in winter is quite similar at all locations, whereas in summer it is 

quite different.   

Wu et al. (2003) studied the diurnal variation of IWV at Koto Tabang, a mountainous area of 

Sumatra Island, in the dry season from June to August 2001. They have observed a distinct diurnal 

variation, where IWV increases during the daytime reaching its maximum in the late afternoon at 

about 1700 LST. They have suggested that the diurnal variation of IWV is caused by the transport 

of water vapor by thermally induced local circulations. Torri et al. (2019) also studied the diurnal 

variation of IWV using data from stations of the Sumatran GPS Array (SuGAr) during 2008-2013. 

Their results show that Madden-Julian Oscillation has an impact on the diurnal cycles in both daily 

mean and diurnal amplitudes. Large variations of amplitudes are seen during the active phase of 

MJO and small variations during the suppressed phase of MJO. They have also seen a shift in the 

IWV peak, the peak moves from 19 LST in the active phase to 22 LST in the suppressed phase.  

Li et al. (2008) found that the diurnal maximum appears during 1800 - 2000 LST in Japan, whereas 

the diurnal minimum appears near the noon for mountainous areas and basins but in the early 

morning for plains. Their results suggested that the differences in phase of the IWV diurnal cycle 

between different locations are due to moisture advection. Meza et al. (2020) analyzed annual and 
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seasonal diurnal IWV variations over central and South America for the period 2007-2013 using 

principal component analysis (PCA). They have classified the stations into four categories inland, 

coastal (stations located less than 5km from a water body), valley (stations surrounded by 

mountains), and undefined (stations that do not fall in any of the previous three categories). The 

analysis shows that PWV exhibits a clear diurnal cycle with a maximum in the afternoon and a 

minimum in the early morning. The diurnal amplitude of PWV is higher over Central America 

than over South America, which is attributed to the stronger land-sea breeze circulation over the 

former. The diurnal cycle is also affected by local topography, with higher PWV values observed 

over mountainous stations. The authors suggest that surface heating is the main driver of the 

diurnal cycle, with the daily cycle of insolation playing a key role.  

Radhakrishna et al. (2014) studied the diurnal variation of water vapor over the continental United 

States obtained from GPS and North American Regional Reanalysis. The study showed that the 

mean seasonal diurnal cycle of Water vapor has both spatial and temporal variation across the 

continental United States. The diurnal cycle also shows significant distinct variation across 

seasons. The phase of the diurnal cycle occurs at 6 UTC (middle of the night) for the Rockies and 

the western United States, whereas for the Eastern side of the Great Plains to the Midwest United 

States phase occurs at 0 UTC (late afternoon).   

Kannemadugu et al. (2022) analyzed the diurnal variation of 18 stations in India and observed that 

diurnal variation is not uniform across all the stations and is dependent on seasons and location. 

At Hyderabad, Bangalore, Madurai, and Bhopal (semi-arid locations), it has been observed there 

is a phase lag between the seasons and the phase lag is different for different locations. For 

Hyderabad, the diurnal peak of winter and post-monsoon is lagging by 3-4 hrs to pre-monsoon and 

monsoon diurnal peaks. For Bangalore, the diurnal peak of monsoon is lagging by 1-2 hrs to pre-

monsoon, winter, and post-monsoon diurnal peaks. For Bhopal and Madurai, the diurnal peak of 

pre-monsoon and post-monsoon is lagging by 1-2 hrs to winter and monsoon diurnal peaks. 

Barman et al. (2017) analyzed the diurnal variation of 5 stations in northeast India and observed 

that within the region of the study itself, diurnal variation is distinct for each site. Stations in Assam 

Valley do not have a distinct diurnal cycle.  

Nirmala Bai et al. (2020) studied the diurnal variation of IWV over a tropical station (Hyderabad) 

in India and observed that the annual diurnal cycle IWV is minimum in the morning and maximum 

in the evening. They also observed a shift in the phase of the IWV cycle with seasons. Diurnal 
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harmonic is strongest and more dominant than 12hr and 8hr harmonics and a positive correlation 

of 0.44 is observed between IWV and surface temperature for the whole year. The correlation 

between IWV and surface temperature is not uniform throughout the seasons. 

Even though several studies, as elucidated above, have examined the diurnal cycle of IWV and 

suggested the factors responsible for this variation for different parts of the world, there have been 

very less studies about the diurnal variation of water vapor in India and in semi-arid regions. The 

studies over India talk provide a general picture of the diurnal cycle of IWV, do not study about 

the factors influencing the variation in detail, and clearly indicate that there is spatial and 

topographic variability in the diurnal cycle of IWV. All these studies show that the diurnal 

variation of IWV is dependent on so many factors. The area of study in this paper Gadanki, India 

(13.46° N, 79.1733° E) is in a tropical semi-arid region in Southern India, surrounded by 

mountains. This chapter is structured to cover multiple aspects of IWV variability, including 

identifying significant harmonics in the diurnal cycle, understanding the underlying mechanisms 

contributing to these variations, and assessing how these patterns change across different seasons. 

The analysis includes the quantification of diurnal, semidiurnal, and terdiurnal components and 

their respective amplitudes and phases. We also examine the contribution of meteorological 

factors, such as evaporation, moisture advection, and atmospheric dynamics, which influence the 

diurnal and seasonal variability of IWV. By analyzing these harmonics and understanding the 

physical mechanisms behind IWV changes, this chapter aims to shed light on the intricate 

atmospheric processes that govern water vapor behavior in semi-arid tropical regions like Gadanki. 

Such insights are crucial for enhancing the accuracy of weather forecasting models, particularly in 

predicting rainfall and storm events, which are highly sensitive to variations in atmospheric 

moisture. 

3.2. Data and Methodology  

The data used in this study have been described in detail in Chapter 2. Here, we provide a brief 

description of the dataset used in this chapter. 

This study utilized the GNSS data from the NARL GNSS network with a time resolution of 15 

minutes over a period of 3 years, from September 2018 to August 2021. The raw GNSS data at 1-

second intervals for all stations were analyzed using GAMIT software to estimate Integrated Water 

Vapor (IWV). The precise final ephemeris from the International GNSS Service (IGS) and the 
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Vienna Mapping Function (VMF) were used for the processing of raw GNSS data and estimation 

of Zenith Total Delay (ZTD). The meteorological data (surface pressure and temperature) needed 

for converting ZTD to IWV were obtained from the Automatic Weather Station (AWS). The AWS 

data were available at a 30-second resolution and were averaged over 30-minute intervals before 

being used in GAMIT processing.  

3.3 Results 

3.3.1. Quantification of Significant Harmonics 

Previous studies have indicated that the diurnal harmonic (S1) is generally stronger than the 

semidiurnal harmonic (S2) in the mean diurnal variation of IWV, with a few exceptions during 

certain seasons. In this study, both the mean diurnal variation and day-to-day variations in IWV 

are analyzed using harmonic analysis and Fischer's significance test, as described in Chapter 2, to 

identify which harmonics are significant. Harmonic analysis involves decomposing the IWV time 

series into different sinusoidal components, each representing variations with specific frequencies. 

This method helps in understanding the periodic behavior of IWV and identifying the key 

contributors to its variability. Fischer's significance test is used to determine whether the identified 

harmonics are statistically significant, thus allowing us to categorize the variation patterns. 

In this study, harmonics are classified into five modes based on their contribution to the diurnal 

variation: 

Mode 1: Only the diurnal harmonic is significant, indicating that the primary variation occurs over 

a 24-hour period, typically driven by solar radiation and evaporation of soil moisture/water. 

Mode 2: Only the semidiurnal harmonic is significant, suggesting that the variation follows a 12-

hour cycle, which could be influenced by atmospheric tides or other periodic forcings. 

Mode 3: Both diurnal and semidiurnal harmonics are significant, indicating a complex interaction 

between daily solar heating and other sub-daily atmospheric processes. 

Mode 4: Neither diurnal nor semidiurnal harmonic is significant, implying that the variation is 

either irregular or dominated by non-periodic factors, such as transient weather systems or 

localized convection. 
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Mode 5: Both diurnal and terdiurnal (8-hour period) harmonics are significant, highlighting 

additional complexity in the IWV variation, possibly due to rapid changes in local meteorological 

conditions or multiple overlapping forcing mechanisms. 

Figure 3.1 shows the percentage distribution of different modes, based on above classification, that 

are significant. For 93% of the time, the diurnal harmonic is significant, indicating the strong 

influence of the daily solar cycle on IWV variability. The semidiurnal harmonic is significant for 

36% of the time, suggesting that atmospheric tides also play a role in modulating IWV. 

Approximately 31% of the time, both diurnal and semidiurnal harmonics contribute to the 

variation, demonstrating the interplay between different periodic processes. Additionally, there are 

53 days where both diurnal and terdiurnal harmonics are significant, pointing to more complex 

sub-daily variations that could be linked to rapid shifts in atmospheric dynamics or localized 

convection events. 

 

Figure 3.1: Percentage distribution of different significant harmonics for the whole data. 

The classification of these modes helps in understanding the dominant factors influencing IWV 

variability in Gadanki. For example, the dominance of the diurnal harmonic across most of the 

dataset suggests that solar radiation and associated surface processes are the primary drivers of 

water vapor variability. However, the presence of semidiurnal and terdiurnal harmonics indicates 

that other processes, such as atmospheric tides, mesoscale circulations, and localized 

meteorological phenomena, also contribute significantly to the observed variations. Understanding 

these modes and their significance provides valuable insights into the behavior of IWV, which is 
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critical for improving the representation of water vapor in weather models, particularly in regions 

with complex topography and varying climatic conditions. 

3.3.2. Seasonal and Monthly Variation of Amplitudes and Phases 

The seasonal distribution of different harmonics, as depicted in Figure 3.2, reveals that the diurnal 

harmonic (S1) is significant for more than 90% of the data in all seasons, indicating that the diurnal 

cycle driven by solar radiation is the dominant factor influencing IWV variability. Semidiurnal 

harmonics (S2) are more significant during winter and pre-monsoon seasons, suggesting that 

atmospheric tides and other sub-daily forcings play a more prominent role during these periods. 

 

Figure 3.2: Percentage distribution of different significant harmonics for the whole data in 

different seasons. 

The seasonal distribution also shows that diurnal amplitudes greater than 5 mm occur more 

frequently in pre-monsoon and post-monsoon seasons, which could be attributed to stronger solar 

heating and enhanced evaporation during these times. In contrast, semidiurnal variations of 

approximately 1.5 mm are more common during winter, monsoon, and post-monsoon seasons, 

which may be linked to atmospheric tides and the influence of mesoscale processes. 
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Figure 2.3: Percentage occurrence of a) diurnal amplitudes (from Mode-1, Mode-3 and Mode-5 

Cases, Diurnal significant days) b) Semi-Diurnal Amplitudes (from Mode-2 and Mode-3 Cases, 

Semi Diurnal Significant days) c) Diurnal Phase (from Mode-1, Mode-3 and Mode-5 Cases, 

Diurnal significant days) and d) Semi-Diurnal Phase (from Mode-2 and Mode-3 Cases, Semi 

Diurnal Significant days) across different seasons. 

Figure 3.3 provides a detailed depiction of the percentage occurrence of amplitudes and phases for 

both diurnal and semidiurnal harmonics across different seasons. The occurrence of IWV maxima 

is more frequent from afternoon to night, consistent with the timing of peak solar heating and 

subsequent moisture convergence. Distinct semidiurnal cycles are observed in all seasons, but their 

peak occurrences vary, reflecting the influence of different atmospheric processes, such as thermal 

tides and convection. 

Figure 3.4 shows the monthly variation in amplitudes and phases, indicating that both diurnal and 

semidiurnal amplitudes are highest in November. This suggests that the transition period between 

monsoon and winter is characterized by significant moisture variability, with average diurnal 

amplitudes ranging from 2.3 to 3.8 mm and semidiurnal amplitudes ranging from 1.4 to 2 mm. 

The higher amplitudes in November could be attributed to the combined effects of residual 

moisture from the monsoon and the onset of wintertime atmospheric stability, which enhances the 

modulation of IWV. 
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Figure 3.4: Monthly variation of a) Diurnal amplitude b) Semi-Diurnal Amplitude c) Diurnal 

Phase and d) Semi Diurnal phase for the whole data. The error bar in Fig 4a & 4b represents the 

standard error of amplitudes in mm, whereas the error bar in Fig 4c & 4d represents standard 

error of phases in h. 

3.3.3. Mean Seasonal Diurnal Variation 

Figure 3.5 shows the mean diurnal variation for each season, highlighting the distinct seasonal 

patterns in the diurnal cycle of IWV. The diurnal cycle of IWV is characterized by a low in the 

early morning, typically around sunrise, followed by an increase throughout the day until evening 

or night, and then a subsequent decrease during the late night to early morning hours. This diurnal 

pattern is influenced by the daily cycle of solar heating, which drives evaporation and atmospheric 

turbulence. The timing and amplitude of these variations are season dependent, reflecting changes 

in solar radiation, atmospheric stability, and moisture availability across different seasons. 



64 
 

 

Figure 3.5: Seasonal mean diurnal cycle of IWV at Gadanki. The unit of Y-axis is mm. The error 

bar represents the standard error of the anomalies in mm. 

During winter and post-monsoon seasons, the diurnal cycle of IWV peaks at 12:15 UTC, whereas 

in the pre-monsoon and monsoon seasons, the peak occurs later at 15:00 UTC. This shift in peak 

timing can be attributed to differences in surface heating and atmospheric dynamics. In the pre-

monsoon and monsoon seasons, increased solar radiation and convective activity lead to a delayed 

and more pronounced peak in IWV, whereas in winter and post-monsoon seasons, the relatively 

stable atmosphere results in an earlier peak. 

The mechanisms contributing to these variations include evaporation, moisture advection, and 

topographical influences. Surface latent heat flux (SLHF), which represents the rate of evaporation 

from the surface, and vertically integrated moisture flux convergence (VIMFC), which indicates 

the net horizontal transport of moisture, are key indicators used to understand these processes. 

Figure 3.6 illustrates the relationship between IWV, VIMFC, and SLHF, showing that the diurnal 

variation in IWV is closely related to VIMFC. Moisture convergence in the lower atmosphere leads 

to an increase in IWV, while divergence results in a decrease. The phase lag between seasonal IWV 

variations can be explained by the combined effects of SLHF and VIMFC, where the timing of 

maximum evaporation and moisture convergence varies across seasons, leading to differences in 

the diurnal cycle of IWV. 
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3.3.4. Diurnal Harmonic Significant Days 

Figure 3.7 shows the diurnal variation of individual diurnal harmonic significant days. It is evident 

that the diurnal variation in IWV is strongly influenced by the vertically integrated moisture flux 

convergence (VIMFC), which dictates both the timing and magnitude of IWV peaks. The peak in 

IWV generally occurs when there is a transition from moisture divergence to convergence, 

indicating that the accumulation of moisture in the atmospheric column is a key factor driving the 

diurnal maxima. The strong correlation between IWV peaks and VIMFC peaks highlights the 

significance of moisture transport processes, such as advection and convergence, in regulating 

IWV variability. 

In addition to VIMFC, the day-to-day variation in IWV is influenced by other atmospheric factors. 

Changes in VIMFC patterns, driven by synoptic-scale weather systems, can significantly impact 

the moisture content in the atmosphere. For instance, the passage of frontal systems or the 

influence of low-pressure areas can alter the convergence patterns, thereby affecting IWV levels. 

Precipitation events, particularly those occurring on preceding days, can lead to a temporary 

depletion of atmospheric moisture, followed by a recovery phase where evaporation and moisture 

advection contribute to replenishing IWV. This recovery phase can further modulate the diurnal 

cycle, creating variability in the timing and magnitude of subsequent peaks. 

The surface latent heat flux (SLHF), which represents the rate of evaporation from the surface, 

plays a crucial role in the early morning buildup of IWV. During the daytime, increased solar 

radiation enhances SLHF, leading to higher evaporation rates and contributing to the gradual 

increase in IWV. The boundary layer processes, including turbulence and vertical mixing, also 

influence the distribution of water vapor, especially during the transition from night to day. 

Turbulence within the boundary layer facilitates the upward transport of moisture, supporting the 

increase in IWV during the morning hours. The interplay between VIMFC, SLHF, synoptic-scale 

weather systems, and boundary layer dynamics governs the diurnal variability of IWV. The 

complexity of these interactions highlights the need for detailed observational and modeling 

studies to improve our understanding of moisture processes and their role in atmospheric dynamics 

over tropical regions like Gadanki. 



67 
 

 

Figure 3.7: IWV diurnal cycle of individual days for only diurnal significant days. Details on the 

top of each subplot are Yr is Year, JD is Julian Day, PWmn is Mean IWV of that day, r12 is % 

contribution of Diurnal harmonic to the diurnal variation of IWV, r22 is % contribution of Semi-

Diurnal harmonic to the diurnal variation of IWV, r122 is % contribution of both Diurnal and 

semi-diurnal harmonics to the diurnal variation of IWV, T is the Time period of significant 

harmonics and the percentage number at the last is the confidence level at which particular 

harmonic is significant. 
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3.3.5 Both Diurnal and Semidiurnal Harmonic Significant Days 

Figure 3.8 shows the days when both diurnal and semidiurnal harmonics are significant. Typically, 

the diurnal harmonic is stronger than the semidiurnal harmonic, indicating that solar-driven 

processes dominate the moisture variation. The presence of both harmonics suggests a complex 

interaction between daily solar heating and atmospheric tides, leading to variability in the moisture 

content. The variation pattern is heavily influenced by changes in the vertically integrated moisture 

flux convergence (VIMFC), which affects the timing and magnitude of IWV peaks.  

Figure 3.8: IWV diurnal cycle of individual days for both diurnal and semi-diurnal significant 

days. Details on the top of each subplot are Yr is Year, JD is Julian Day, PWmn is Mean IWV of 

that day, r12 is % contribution of Diurnal harmonic to the diurnal variation of IWV, r22 is % 

contribution of Semi-Diurnal harmonic to the diurnal variation of IWV, r122 is % contribution of 

both Diurnal and semi-diurnal harmonics to the diurnal variation of IWV, T is the Time period of 

significant harmonics and the percentage number at the last is the confidence level at which 

particular harmonic is significant. 

Sudden shifts in VIMFC, such as changes from convergence to divergence or vice versa, result in 

abrupt peaks or dips in IWV. These dynamics highlight the role of synoptic weather conditions, 
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mesoscale processes, and atmospheric stability in modulating the contributions of both harmonics 

to the observed variability in IWV. This interaction is particularly pronounced during transitional 

weather periods, when multiple atmospheric processes overlap, leading to increased complexity in 

the IWV diurnal cycle. 

3.3.6 Neither Diurnal nor Semidiurnal Harmonic is Significant 

Figure 3.9 shows the days on which neither diurnal nor semidiurnal harmonic is significant. On 

these days, the diurnal variation of IWV appears to be irregular or highly influenced by non-

periodic factors. The diurnal variation can be random or perturbed due to advection of moisture 

into the atmosphere by transient synoptic systems or local convection events. For example, on 

Julian Day (JD) 260 of the years 2018 and 2021 (Figure 3.13(a, f)), the diurnal variation is 

characterized by low IWV levels at the beginning of the day, followed by a sudden increase and 

subsequent decrease. This pattern is attributed to moisture advection and precipitation events that 

occurred after significant moisture buildup at 16 UTC and 13 UTC for JD 260 of 2018 and 2021, 

respectively. The advection of moisture into the atmosphere at 14 UTC for JD 260 of 2018 and at 

13 UTC for JD 260 of 2021 led to substantial variability in IWV, disrupting any potential harmonic 

pattern. 

In the absence of such moisture advection or precipitation events, the IWV variations on these 

days might have exhibited a clearer diurnal or semidiurnal harmonic. However, the presence of 

these atmospheric disturbances leads to a lack of significant periodicity, resulting in random or 

complex diurnal patterns. Figure 3.13(b-e) shows instances where either 8-hour or 6-hour 

harmonics were significant, or where no significant harmonic patterns were observed at all. It is 

evident that on these days, the diurnal variation is not driven by typical forcings like vertically 

integrated moisture flux convergence (VIMFC) or surface latent heat flux (SLHF), but rather by 

stochastic processes and local atmospheric conditions. 
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Figure 3.9: IWV diurnal cycle of individual days for Neither Diurnal nor Semi-diurnal Harmonic 

is significant. Details on the top of each subplot are Yr is Year, JD is Julian Day, PWmn is Mean 

IWV of that day, r12 is % contribution of Diurnal harmonic to the diurnal variation of IWV, r22 is 

% contribution of Semi-Diurnal harmonic to the diurnal variation of IWV, r122 is % contribution 

of both Diurnal and semi-diurnal harmonics to the diurnal variation of IWV, T is the Time period 

of significant harmonics and the percentage number at the last is the confidence level at which 

particular harmonic is significant. 

3.4 Discussion 

The diurnal variation in IWV is a complex function influenced by a combination of atmospheric 

processes, including evaporation, vertical air motion, precipitation, convection, and turbulence. 

These factors can be categorized into three components: sources, sinks, and transport mechanisms 

of IWV. Solar radiation is the primary source that drives evaporation from the surface, while the 

atmospheric wind regime plays a crucial role in transporting water vapor horizontally and 

vertically within the atmosphere. The contribution of moisture convergence (VIMFC) is 

particularly important in determining the mean seasonal diurnal variation of IWV. Significant 

diurnal harmonics are observed throughout all seasons, indicating that the diurnal cycle is 

primarily driven by solar radiation and related surface processes. However, the impact of synoptic-

scale weather systems, including low-pressure areas and frontal systems, can alter moisture 
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convergence patterns, adding complexity to the diurnal variability. For both diurnal and 

semidiurnal significant days, the occurrence of IWV maxima is closely linked to VIMFC and 

precipitation events. Precipitation acts as a sink for atmospheric moisture, leading to a reduction 

in IWV, while subsequent evaporation and moisture advection can cause a recovery in IWV levels. 

The study also underscores the role of mesoscale circulations, such as land-sea breeze interactions 

and local convection, in modulating IWV variation. During the monsoon and post-monsoon 

seasons, the enhanced convective activity and frequent occurrence of precipitation events 

significantly influence IWV. Moisture advection from surrounding regions and the vertical 

transport of water vapor due to convection contribute to the observed diurnal peaks. These 

processes are particularly important in tropical semi-arid regions like Gadanki, where the 

interaction between large-scale and local atmospheric dynamics leads to significant variability in 

water vapor content. Understanding the interplay between VIMFC, surface latent heat flux 

(SLHF), and atmospheric dynamics provides valuable insights into the diurnal and seasonal 

variability of IWV. The detailed analysis presented in this study highlights the importance of 

considering both large-scale synoptic conditions and local meteorological factors when assessing 

IWV variability. Such insights are crucial for improving the representation of water vapor 

processes in weather and climate models, ultimately enhancing the accuracy of weather 

forecasting, particularly for rainfall and storm events that are highly sensitive to variations in 

atmospheric moisture. 

3.5 Conclusion 

This study analyzed the diurnal variation of IWV in the Gadanki region using three years of IWV 

data. The mean seasonal and day-to-day diurnal variations were subjected to Fischer's significance 

test to determine the significance of various harmonics. Results indicated that the diurnal harmonic 

(S1) is significant for 93% of the time, demonstrating the dominant role of solar radiation in driving 

IWV variability. The occurrence of diurnal cycles with amplitudes between 2-3 mm was found to 

be the most frequent, with peaks typically observed during the evening to nighttime hours. The 

semidiurnal harmonic (S2), while generally weaker than the diurnal harmonic, was found to be 

significant for 36% of the time. The amplitude of semidiurnal cycles varied across seasons, with a 

maximum of 1.5 mm occurring in winter, monsoon, and post-monsoon, while higher amplitudes 

of 2 mm were more common in pre-monsoon. Additionally, two distinct types of semidiurnal 
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cycles were identified, differing in the timing of their peaks, which varied across seasons. The 

monthly analysis revealed that both diurnal and semidiurnal amplitudes were highest in November, 

reflecting the combined effects of residual moisture from the monsoon and the onset of winter 

atmospheric stability. 

The study also highlighted the importance of VIMFC in dictating the mean seasonal diurnal 

variation of IWV. VIMFC plays a crucial role in the timing and magnitude of IWV peaks, with 

significant correlations observed between IWV maxima and moisture convergence. Precipitation, 

acting as both a moisture sinks and a modulator of atmospheric moisture content, was also found 

to influence the phase of IWV cycles, particularly during the recovery phase following rainfall 

events. The presence of distinct diurnal, semidiurnal, and terdiurnal harmonics underscores the 

complex interplay between solar-driven processes, atmospheric tides, mesoscale circulations, and 

synoptic weather systems in regulating IWV variability. Understanding these interactions is 

essential for improving the representation of water vapor processes in weather and climate models. 

Enhanced modeling of IWV is critical for improving weather forecasts, especially for rainfall and 

storm events that are highly sensitive to variations in atmospheric moisture. 

Future studies should aim to extend these findings to other regions of India, accounting for diverse 

climatic conditions and topographical influences. Such research will help refine our understanding 

of the factors affecting IWV variability and improve predictive capabilities for weather and climate 

phenomena. 
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4.1 Introduction  

The atmospheric water vapor is one of the fundamental component required for virtually all-

weather phenomena occur ring in the troposphere and, therefore, plays a central role in the 

hydrological cycle, energy transfer through latent heating, and radiation budget (Bevis et al. 1992; 

Holloway and Neelin, 2009; Schiro and Neelin, 2019). The energy released during water vapor 

condensation also affects the vertical stability of the atmosphere and influences the weather system 

and associated precipitation patterns (Sherwood et al. 2010; Adams and Souza, 2009). Water vapor 

is a potent greenhouse gas with a strong absorption potential of outgoing longwave radiation and 

controls the Earth’s radiation budget. Recent studies used IWV and its convergence/divergence as 

a prognostic variable to understand large-scale atmospheric dynamics, mon soon/storm onset, and 

also in numerical weather prediction (NWP) models (Bretherron et al. 2004; Peters and Neelin, 

2006; Takiguchi et al. 2000; Puviarasan et al. 2015).  

AI/ML techniques are becoming popular for prediction purposes. Several studies have made 

successful attempts for the prediction of IWV using different AI-based techniques like ANN, 

adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM), and multilayer 

perceptron (MLP) considering ground parameters such as temperature, pressure, humidity to train 

the model (Suparta and Alhasa, 2013; Yue and Ye, 2019). Studies have shown that the ANFIS 

model shows better performance than MLP models for PWV forecast (Suparta and Alhasa, 2013). 

Though these techniques offer better predictions, the predicted values are, presently, being used to 

fill IWV data gaps rather than used to predict IWV in advance in a nowcasting mode. A few 

attempts have been made to predict IWV using ANN and genetic algorithm 6 and 12 h in advance 

using IWV and intrinsic mode functions of IWV (Yue and Ye, 2019). The maximum relative error 

is found to be ∼20% for the 6 h forecast, whereas it is much worse for the 12 h forecast. Even 

though the studies report reasonably good forecasts, training the ANN with huge data is 

computationally expensive and time-consuming. Recently, several studies have focused on the 

nowcasting of storms and rainfall based on IWV characteristics [using data obtained from Global 

Navigation Satellite System (GNSS) receivers], using preset thresholds or AI techniques (Yue and 

Ye, 2019; Manandhar et al. 2018; Sapucchi et al. 2019; Li et al. 2020; Benevides et al. 2015; Yao 

et al. 2017). These methods are highly successful in predicting storms/rainfall accurately, but all 

of them suffer from false alarms. Nevertheless, these techniques warrant the knowledge of accurate 



75 
 

IWV with the shortest possible latency, if preferable, in advance (predicted values) for improved 

nowcasting of storms. Accurate prediction of IWV allows the prediction of a storm in advance and 

provides more lead time for disaster preparedness. Also, the predicted data can be used to fill the 

existing data gaps in the IWV time series. Keeping the above aspects in mind, an attempt has been 

made in this work to develop a fast and reliable model to predict IWV with different lead times 

(30 min to 2 h) adapting a robust ML technique, gradient boosting machine (GBM). The model is 

trained using GNSS receiver data and evaluated its output over different synoptic conditions. The 

sensitivity of the predicted IWV on predictors is also examined to know their importance. 

4.2 Methodology 

GNSS technique has, now, become a promising means to obtain IWV, as this technique offers IWV 

with high temporal resolution virtually in all weather conditions (Bevis et al. 1992). For this study, 

two and half years (June 2018–December 2020) of GNSS receiver measurements made at Gadanki 

(13.4593 N, 79.1684 E) have been used. The detailed methodology, including data preprocessing, 

feature selection, and model development, has been discussed in Chapter 2.  Here, we provide a 

summary specific to the machine learning approach and the implementation details used for IWV 

prediction. 

4.2.1 LightGBM Approach  

In this study, we utilize LightGBM, a Gradient Boosting Machine (GBM) model, to predict IWV. 

Compared to conventional Gradient Boosting Decision Trees (GBDT), LightGBM employs a 

gradient-based one-side sampling (GOSS) approach to speed up the training process while 

maintaining the accuracy. This makes it highly suitable for fast, memory-efficient IWV prediction 

with high temporal resolution. Figure 4.1 presents a systematic diagram illustrating the data 

preprocessing and feature engineering steps, followed by splitting the data into training, testing, 

and validation sets, conducting hyperparameter tuning, and ultimately predicting the desired 

parameter. 
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Figure 4.1: Systematic Diagram of prediction using LightGBM technique. 

4.2.2 Model Setup and Training 

Selection of parameters (predictors) is very crucial, which helps the model to predict the predictand 

accurately. Variation in any parameter, including IWV, depends on source, sink and transport terms. 

For IWV prediction, air temperature (indicator for evaporation), specific humidity (SH), soil 

moisture (SM) (for latent heat flux), rainfall (removes water vapor from the atmosphere and acts 

as a sink), and horizontal vertically integrated moisture flux (hereafter referred to as moisture flux, 

which represents the horizontal transport of moisture and is estimated from ERA5 reanalysis data, 

which was later interpolated to 30 min. resolution) are the ideal parameters. In addition, radiation 

(short and longwave) and soil temperature measurements are also related to moisture through 

evaporation of water (from water bodies) and soil moisture.  

Ideally, all the parameters should be independent of each other and should have a link with IWV. 

The selected parameters are, therefore, correlated with each other to know their interdependency 

(Figure 4.2). As expected, the soil temperature and shortwave radiation show strong correlation 

with air temperature and, therefore, they are excluded from the analysis. Also, the longwave 

radiation is also excluded as it does not show a strong correlation with IWV. Moreover, the study 

tries to develop the prediction model with easily available data sets, like GNSS receiver and AWS 

measurements. Finally, these independent parameters (air temperature, specific humidity, soil 

moisture, moisture flux and rain rate) have been given to the model to train it for prediction. 
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Figure 4.2: Correlation coefficient between different parameters considered for the analysis. 

The LightGBM model was trained using two and a half years of GNSS-derived IWV data, 

spanning from June 2018 to December 2020. The dataset was divided into two parts: June 2018 to 

December 2019 for model training and 2020 for validation. Training the model involved selecting 

optimal hyperparameters through iterative tuning, using a combination of early stopping and grid 

search to avoid overfitting and ensure robust performance. 

Besides physical parameters, model also requires several features in the predictors for the 

prediction of IWV. For instance, IWV follows a diurnal pattern and understanding this pattern 

makes the prediction easy in normal conditions. However, the diurnal pattern is often disturbed by 

the occurrence of storms, during which the IWV increases dramatically. Similarly, gradients and 

double gradients in selected parameters are useful for the short-term prediction of IWV. It is also 

imperative to assess the importance of each of these parameters/features in the prediction of IWV. 

The number of splits of features in lightGBM processing (information gain) indicates the 

importance of the parameter/feature. Figure 4.3 presents the feature importance (in terms of %, 

estimated from the number of times the feature is used for prediction compared to a total number 

of splits) in the prediction of IWV with different lead times. For instance, Sinusoidal IWV has the 



78 
 

highest splits for all time horizons and therefore is the most important feature for the prediction of 

IWV. Also, the feature importance varies with predictions with different lead times. The feature 

importance of meteorological parameters, like temperature, specific humidity, moisture flux and 

soil moisture, increases with prediction with increased lead times. On the other hand, the gradients 

of parameters and sinusoidal patterns are more important for short term prediction (30 min). 

Among all parameters/features, rainfall shows the lowest value of feature importance. 

 

Figure 4.3: Feature importance of selected meteorological parameters and their patterns (as 

obtained by the model) for predictions with different lead times. 

4.3 Results and Discussion 

4.3.1 Model Performance 

In the present study, a machine learning-based LightGBM model was developed to predict IWV 

for different lead times. To evaluate the model’s performance, data from April 2019 and June 2019 

were used for testing, representing typical dry and wet months for the Gadanki region. The model 

was implemented with different lead times ranging from 30 minutes to 2 hours, with 30-minute 

intervals. The uncertainty in the model is presented in terms of daily RMSE values, as shown in 

Figure 4.4. The RMSE values for different lead times are referred to as RMSE30, RMSE60, 

RMSE90, and RMSE120, with the subscript representing the prediction lead time. 
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Figure 4.4: RMSE values for predicted IWV with different lead times, indicating the testing of the 

model performance during an (a) dry season (April 2019) and (b) rainy season (June 2019). The 

gap in (b) is due to the data gap. 

The daily RMSE30 values for the selected two months were consistently less than 1 mm, indicating 

that the prediction was highly accurate for a 30-minute lead time. As the lead time increased, the 

RMSE values also increased, with maximum values reaching up to 3 mm for a 120-minute lead 

time prediction. However, about 80% of the time, the RMSE was less than 2 mm, even for 120-

minute lead times. This demonstrates the robustness of the LightGBM model in accurately 

capturing the variations in IWV with minimal error across different lead times. Upon a detailed 

examination of the days with larger RMSE values, it was observed that these large values were not 

always associated with rainy periods. This finding highlights the influence of other factors, such 

as atmospheric turbulence and convective activities, in causing deviations in IWV predictions. 

The model-predicted IWV values are validated using the data from 2020. The data are first 

segregated into different seasons: winter (January and February), pre-monsoon (March–May), 

monsoon (June–September), and post-monsoon (October–December), following the India 

Meteorological Department. It facilitates the assessment of the model performance in different 

seasons.  Figure 4.5 presents a comparison between the predicted IWV with a 30-minute lead time 

and the reference GNSS-derived IWV values for different seasons. The color indicates the 

percentage occurrence of IWV at that value. Linear regression fit is performed, and the derived 

statistics are also included in Fig. 4.5. The correlation coefficient was found to be 0.99 across all 

seasons, indicating excellent agreement between predicted and observed IWV values. The majority 

of the data points lie along the diagonal in all seasons, except during the monsoon season, where 
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some scatter can be observed, likely due to the presence of long-lasting storms with multiple 

convective cells. The bias during the monsoon season was found to be 2.39 mm, whereas the bias 

in other seasons was much lower, ranging between 0.5 mm and 0.64 mm. A slightly larger bias and 

the scatter in the data during the monsoon could be due to the higher occurrence of storms, 

particularly the long-lived storms with multiple convective cells. A slightly larger bias and scatter 

during the monsoon season could be due to the higher occurrence of storms, particularly the long-

lived storms with multiple convective cells.  

 

Figure 4.5: Comparison of model predicted IWV with that measured by GNSS receiver in different 

seasons. Color bar indicates the percentage of occurrence of data points. Linear regression fit (red 

line) and parameters of the fit (slope, intercept (bias), RMSE and R2) are also shown in the figure. 

The validation exercise has been repeated for different time scales, like 60, 90, and 120 min, to 

check the capability of the model. Table 4.1 shows the RMSE values with different lead times 

during different seasons. Clearly, the model performance is outstanding with RMSE values ≤ 2 

mm (except for monsoon with 120 min lead time). The RMSE values are less than 1 mm for 

predictions up to 60 min in advance. As the lead time increases, the error (RMSE) in the 

predictability of the model also increases but remains within the tolerable limit (less than the 

uncertainty obtained in the testing data). 
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Table 4.1: RMSE values obtained from predicted IWV with different lead times during different 

seasons. 

Season RMSE30 RMSE60 RMSE90 RMSE120 

Winter 0.58 0.64 1.23 1.85 

Premonsoon 0.37 0.75 1.11 1.75 

Monsoon 0.42 0.81 1.36 2.02 

Postmonsoon 0.36 0.51 1.03 1.63 

 

4.3.2 Sensitivity Analysis 

Two types of sensitivity analyses have been performed to examine the dependency on predictors. 

Presently, moisture flux is estimated from reanalysis data, which typically will be available to users 

with some latency. However, for real time applications, one should depend on numerical 

forecasting model outputs, which may have some errors. So, to examine the impact of moisture 

flux on the prediction, the IWV prediction was made by varying reanalysis moisture flux values 

by ±10% and ±20%, and each time RMSE values are estimated with predicted values. The RMSE 

value with a 20% variation of moisture flux from reanalysis data is 0.69 mm (0.05 mm variation 

from the original value). It indicates that one can use NWP models out of moisture flux (as long 

as the error is within 20%) to predict IWV. 

Table 4.2: Sensitivity analysis on reanalysis moisture flux data. 

Type Reanalysis 

(mm)  

+10% 

(mm) 

+20% 

(mm) 

-10% 

(mm) 

-20% 

(mm) 

RMSE 0.64 0.69 0.69 0.69 0.69 

 

The sensitivity of IWV prediction on other predictors is also tested by excluding them (temperature 

and humidity, SM, moisture flux, and rain). Clearly, the exclusion of any of the parameters (apart 

from IWV) does not change the RMSE considerably. It also indicates that IWV is the most 
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important variable (predictor). Note that the present analysis includes all the data, including storm 

days. Some of these predictors are important for storm days as they contain crucial information 

(temperature drop, IWV reduction after rain, etc.) for IWV prediction on storm days.    

Table 2.3: RMSE values obtained from predicted IWV with different predictors, highlighting the 

sensitivity of various predictors. 

 

4.3.3 Storm Event Analysis 

Past studies have shown that the variation of IWV will be quite different from that of simple diurnal 

variation. The storm-associated convective motions, large-scale convergence, and related 

processes increase IWV dramatically before the occurrence of precipitation. This increase in IWV 

is used as one of the predictors for storm/rain occurrence in several studies (Yue and Ye, 2019; 

Manandhar et al. 2018; Sapucchi et al. 2019; Li et al. 2020; Benevides et al. 2015; Yao et al. 

2017). The applicability of the LightGBM for storm days has been tested by examining whether 

or not the predicted IWV shows such an increase. Fig. 4.6 shows predicted IWV with different 

lead times along with rainfall (30 min accumulated) and GNSS-derived IWV (for reference), 

highlighting the chosen ML model’s capability on a storm day (July 15, 2019). Fig. 4.6 clearly 

shows some interesting features. The IWV variation is found to be complex during the storm period 

(14:30–19:30 UT), with a large initial rise, subsequent reduction, and then an increase, 

corresponding well with rainfall variation. The signature of IWV jump or buildup starts 2 h before 

the rain begins and the peak IWV is observed 30 min before the rainfall peak. The model-predicted 

IWV is able to capture this variability in a well-defined way for all lead times. Although the model 

is able to capture the IWV jump before the storm, small deviations from the GNSS derived IWV 

Time/Type RMSE30 RMSE60 RMSE90 RMSE120 

All 0.63 0.93 1.16  1.37  

Except Temperature and Humidity 0.54 0.89 1.07 1.27 

Except Soil moisture 0.66 0.93 1.17 1.40 

Except moisture flux 0.65 0.89 1.12 1.36 

Except rain 0.65 0.93 1.14 1.38 
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are seen during subsequent variations. These variations are, probably, responsible for the scatter 

(albeit small) during the monsoon period in Fig. 4.5.  

The model's ability to accurately capture these complex variations, even with longer lead times, 

highlights its potential for operational use in nowcasting and weather prediction applications. This 

capability is particularly beneficial for mitigating the impacts of extreme weather events, as it 

provides critical lead time for emergency preparedness and response efforts, ultimately 

contributing to reducing the risk posed by sudden and severe weather conditions. 

 

Figure 4.6: Temporal variation of predicted (different lead times) and retrieved IWV on a storm 

day (15 July 2019). Figure also shows the AWS-measured rainfall. 

Although the algorithm was developed with post-processed data, its performance has also been 

tested with real-time data to check its applicability for real-time applications (not shown here). The 

performance is found to be nearly equal to that of post-processed data (R2 = 0.90, RMSE 2.17 mm 

for 30 min prediction). 

4.4 Conclusion 

The application of machine learning techniques, particularly LightGBM, for predicting IWV has 

demonstrated highly promising results, providing accurate predictions across a variety of weather 

conditions and lead times. The model's effectiveness in predicting IWV during both regular and 

stormy conditions showcases its potential for operational use in nowcasting, which is critical for 

early warnings, disaster preparedness, and emergency response. The ability to predict sudden 
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changes in atmospheric moisture content, as seen during storm events, makes this approach 

particularly valuable for mitigating the impacts of extreme weather. 

The feature importance and sensitivity analyses offer valuable insights into the dynamics of the 

different predictors. Sinusoidal IWV patterns emerged as the most influential feature for short-

term predictions, emphasizing the importance of accurately capturing the diurnal cycle of IWV. 

Short-term meteorological gradients were also crucial, especially for immediate forecasts, while 

variables related to moisture flux and transport processes gained importance for medium-term 

predictions, particularly during storm conditions. 

Future work will focus on further refining the model for real-time applications, addressing 

computational efficiency, and expanding its applicability to different geographic regions with 

varying climatic conditions. The aim is to enhance the overall accuracy and reliability of 

nowcasting, ultimately contributing to more effective early warning systems and disaster risk 

reduction. 
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5.1 Introduction 

Storms are life-threatening weather events with huge damage potential to property as they are 

accompanied by intense rain, flash flooding, hail, lightning, violent winds, and even tornadoes. 

Recent studies have shown that these storms can be nowcasted (1–6 h in advance) with reasonable 

accuracy with the help of rapidly updated high temporal resolution datasets obtained with AWS 

(Mostajabi et al. 2019), Doppler weather radars, satellites (cloud maps with infrared channels), 

lightning networks, and multiwave length radiometers (Madhulatha et al. 2013), GNSS networks 

(Benevides et al. 2015; Yao et al. 2017; Manandhar et al. 2018). In recent years, blending 

techniques employing different datasets are also being developed for improved nowcasting (Chkeir 

et al. 2023). Nowcasting significantly reduces fatalities and property damage and also plays a key 

role in crisis management.  

The GNSS-based nowcasting techniques are increasingly becoming popular due to the availability 

of high resolution, low latency, and round-the-clock data of IWV (Bevis et al. 1992; Benevides et 

al. 2015; Yao et al. 2017; Manandhar et al. 2018; Martinez et al. 2021). Furthermore, the GNSS 

receiver networks are being established at a rapid phase in all the countries, providing a unique 

opportunity to map water vapor and its variability on a global scale. It is known that water vapor 

is the basic ingredient for convective storms/rain (Neelin et al. 2009), but their relation is complex 

and varies from land to ocean and also between different oceanic regions (Bretherton et al. 2004; 

Ahmed and Schumacher, 2017). At a local scale, moisture builds up rapidly before the occurrence 

of rain fall/storm and this signature has been used in several studies to nowcast rainfall/storm 

(Benevides et al. 2015; Yao et al. 2017; Manandhar et al. 2018; Sapucci et al. 2019; Zhao et al. 

2020; Guerova et al. 2022; Chkeir et al. 2023).  

The GNSS-based nowcasting models typically use a thresh old magnitude and/or gradient of IWV 

for identifying storm/rain occurrence (Benevides et al. 2015; Yao et al. 2017; Manandhar et al. 

2018). Some of the studies used hybrid models, wherein GNSS data are coupled with 

meteorological data or radar observations or lightning data to predict the storm (Benevides et al. 

2015; Yao et al. 2017; Chkeir et al. 2023) noted a positive correlation between the large gradients 

in IWV and rainfall occurrence and therefore devised a method to nowcast rainfall based on IWV 

increment. Although the model’s predictability is good (75%), false alarm is also high at 40%–

65%, depending on the threshold IWV gradient. Yao et al. (2017) used three parameters of IWV: 



87 
 

magnitude, variation, and rate, as indicators for nowcasting rainfall. The inclusion of other IWV 

parameters has increased the detection rate by 7%; however, the false alarm rate is nearly remained 

the same (66%). Subsequent studies also used IWV increment and IWV slope (Zhao et al., 2019) 

or magnitude of IWV and rate of IWV (Manandhar et al. 2018) or magnitude of IWV, IWV 

increment, and rate of IWV (Li et al. 2020) with different thresholds to improve the predictability 

of storms/rainfall and also to reduce the false alarm rate. Zhao et al. (2020) improved the rainfall 

forecasting model with the help of five predictors, monthly IWV, seasonal IWV, ZTD fluctuations, 

and their first derivatives. The model, indeed, increased the detection rate to 95% and reduced the 

false alarm rate to less than 30%. To reduce the false alarm rate, researchers focused on blending 

techniques by employing data from a variety of instruments, such as AWS, GNSS receivers, 

infrared channels of satellites, and DWRs. The model developed by Benevides et al. (2019) 

employing satellite-derived cloud top temperature and pressure along with IWV, air pressure, 

relative humidity, surface air pressure, and temperature to predict rainfall events had a success rate 

of 64% and a false alarm rate of ∼22%. Guerova et al. (2022) developed a “convective storm 

demonstrator” using IWV and instability indices. The implementation of this algorithm on the data 

collected at 12 locations in Bulgaria reveals that the predictability (false alarm rate) of the model 

is 83% (38%). It can be inferred from the above studies that IWV-derived parameters can be used 

as primary predictors of storm events, while a well-chosen secondary parameter reduces the false 

alarms. 

Recently, AI/ML techniques have become popular in geosciences, including GNSS-based 

prediction of IWV (Suparta and Alhasa, 2016) and nowcasting applications (Sangiorgio et al. 

2020; Los et al. 2020; Liu et al. 2022; Chkeir et al. 2023). Some of these studies used zenith 

tropospheric delay (ZTD) to predict extreme events (Sangiorgio et al. 2020). The usage of 

predicted IWV allows nowcasting of storms/rainfall in advance, providing more time for disaster 

managers.  

As seen above, some of the studies are qualitative and others are based on simple gradient methods 

quantifying the changes in water vapor. However, the nowcasting of storms by the above 

approaches provides a very short lead time for disaster preparedness, 5–30 min. Furthermore, false 

alarm is found to be large with all models/algorithms. In the present study, a hybrid model is 

developed to nowcast storms with different lead times (up to 2 h) by blending predicted IWV by 
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employing an AI/ML technique with GNSS receiver and AWS data as inputs with satellite 

measurements. This model combines the strengths of earlier techniques and provides a robust 

model to improve the detection capability of storms with reduced false alarms. Furthermore, early 

prediction of storms will provide more lead time for disaster preparedness. 

5.2 Data and Methodology 

5.2.1 Data 

The GNSS receiver measurements obtained during September 2018–December 2020 have been 

used for the present study. In addition, other meteorological parameters, such as surface 

temperature, surface pressure, wind speed and direction, and accumulated rainfall obtained from 

AWS, are used. Near real-time brightness temperature (Tb) retrieved from Indian National Satellite 

(INSAT-3DR) at 30-min resolution is also used to monitor cloud growth and decay. An X-band 

dual-polarization Doppler weather radar has been used to detect the storms and their movement in 

and around Gadanki. The radar is capable of providing such information up to a range of 80 km.  

The detailed methodology of IWV retrieval from GNSS measurements has been discussed in 

Chapter 2. Therefore, an overview of the approach specific to storm nowcasting is only presented 

below. 

5.2.2 Methodology 

The nowcasting technique proposed in the present study is a two-step process: 1) prediction of 

IWV using an ML technique (light GBM) and 2) fixing thresholds to chosen predictors for 

nowcasting storms. 

5.2.2.1 IWV Prediction 

The first step involves predicting IWV using a machine learning approach (LightGBM), which has 

been discussed in detail in Chapter 4. IWV prediction plays a vital role in identifying the moisture 

buildup associated with storm development. Using GNSS receiver data, the LightGBM model 

predicts IWV values with different lead times ranging from 30 to 120 minutes. It is shown in 

Chapter 4 that the model was able to predict IWV with good accuracy up to 2 h with seasonal 

RMSE ≤ 2 mm. 
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5.2.2.2 Threshold Calibration for Nowcasting 

The second step involves setting thresholds for chosen predictors to identify storms. Three 

predictors are considered in addition to the magnitude of IWV: changes in IWV magnitude, 

temporal gradients in IWV, and changes in Tb. The thresholds are calibrated using historical storm 

data, ensuring that the model can effectively distinguish between storm and non-storm events. The 

chosen thresholds are optimized to minimize false alarms while retaining high sensitivity to storm 

occurrences. 

5.2.3 Evaluation Metrics 

To evaluate the performance of the hybrid storm nowcasting model, the following metrics have 

been used: Probability of Detection (POD), False Alarm Rate (FAR), Miss Rate (MR), Model 

Accuracy (MA). All these metrics are defined and discussed in Chapter 2 in detailed way.  

5.3 Results and Discussion 

5.3.1 Evaluation of predicted IWV for storm cases  

As seen in Chapter 4, the LightGBM performed well in predicting IWV with RMSE less than 2 

mm in all seasons. The same technique is validated here on data collected during several storm 

events occurred in Gadanki region. The evaluation included a diverse set of storm cases, such as 

isolated thunderstorm events, mesoscale convective systems, and long-duration convective storms, 

to thoroughly test the robustness of the hybrid model. The first stage of the evaluation involved 

predicting IWV up to a lead time of 120 minutes. The predicted IWV values were compared with 

observed data for various storm events. The validity of the algorithm has been tested here for 

various storm cases [two isolated thunderstorm events (July 15 and August 7, 2020) occurring at 

different times of the day and one long event (July 8, 2020) with multiple cells of convection] at 

different lead times (30–120 min) in Fig. 5.1. The increase in IWV is seen in almost all events, 

while it is concomitant with the rainfall in some cases and observed much before the event in other 

cases. The predicted IWV could accurately reproduce the observed temporal variability of IWV 

for all three events and for all lead times. The model can predict even the storm-associated increase 

in IWV accurately. Therefore, the predictive model will be quite effective in nowcasting the 

storms, as it is possible to obtain IWV and monitor its variation before the storm occurrence. The 

RMSE in forecast IWV for all lead times is < 2 mm. The model prediction of IWV is compared 
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with the observed IWV for all the storm cases, and the statistics of correlation analysis for different 

lead times are shown in Table 5.1. A very good correlation is found with a correlation coefficient 

≥ 0.85 and RMSE < 1.2 mm up to 120-min prediction. 

 

Figure 5.1: Predicted IWV with light GBM technique along with GNSS-derived IWV and rainfall 

on 3 storm days, (a) 15 July 2020, (b) 07 August 2020 and (c) 8 July 2020. 

Table 5.1:  Statistics of correlation analysis for storm days, depicting the accuracy of model’s 

prediction of IWV for different lead times. R2 and MAE indicate correlation coefficient and mean 

absolute error, respectively. 

Statistical Metric 30 min 60 min 90 min 120 min 

R2 

RMSE 

MAE 

0.96 

0.42 

0.36 

0.93 

0.72 

0.50 

0.90 

0.91 

0.66 

0.85 

1.17 

0.84 
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5.3.2 Determining Optimal Thresholds 

To identify storms unambiguously with an automated algorithm using moisture buildup as a 

criterion, several storms need to be examined to arrive at thresholds for predictor(s). For this 

purpose, storms passing close to Gadanki location (within 1 km) have been detected using 

measurements from the X-band dual-polarization radar at Gadanki.  

Figure 5.2 shows a typical example of storm occurrence (on 13 July 2019) as seen by the X-band 

radar, automatic weather station (AWS), INSAT-derived Tb and GNSS receiver. The spatial 

variation of reflectivity factor at horizontal polarization (ZH) at 8° elevation around Gadanki (10 

km X 10 km), as observed by X-band polarimetric radar (Figure 5.2a), clearly shows convective 

cells (ZH ≥ 40 dBZ) embedded in a large precipitating system. The cells on the southwest side 

passed over the study site and produced a good amount of rainfall at Gadanki. The AWS 

measurements clearly show copious rainfall (about 45 mm in 5 hours) starting from 15:30 UTC at 

Gadanki. The AWS measurements logged at 1 sec. resolution are averaged over 30 min. 

(accumulated for rainfall) to match with GNSS receiver measurements. Sudden drop in 

temperature and rapid increase in wind speed can also be seen at the time of rainfall.  The GNSS-

derived IWV started increasing at 12 UTC, reached a maximum at the time of peak rainfall, and 

decreased rapidly after the rainfall. The dramatic increase in IWV is much more than the 

climatological daily diurnal variations (dashed line), indicating that the increase is associated with 

the storm. The increase in IWV started ~4 hours before the rain (storm) occurrence at Gadanki and 

the increase is about 8 mm. It is clear from the Figure 5.2b that the IWV increase is an excellent 

predictor for the occurrence of storm, as the increase is seen well ahead of the storm.  

In addition to the above parameters, Benevides et al. (2019) suggested the use of gradient in Tb to 

reduce the false alarm rate. Dramatic change in Tb can be clearly seen (Figure 5.2b) prior to and 

during the occurrence of storm/rainfall.  The Tb value has reduced by ~ 90 K in 3 hours. Even prior 

to the storm, the reduction in Tb was significant, indicating that it can also act as good predictor. 

Figure 2b clearly shows the signature of storm in various surface meteorological parameters and 

Tb, i.e., reduction in temperature and Tb, increase in wind speed, high IWV and temporal changes 

in IWV. To identify and predict the storms, one should use proper thresholds to the above 

parameters. Larger thresholds will only identify intense storms, while smaller thresholds will 

increase false alarm rates. In other words, different thresholds provide different prediction 
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outcomes; therefore, determining an ideal threshold value for high prediction capacity and least 

false alarm rate is essential. Data from September 2018 to December 2019 are used to identify 

storms and the data corresponding to chosen predictors during the passage of these storms are used 

to generate the threshold values for predictors.  It includes all types of convective storms/cells, 

including 33 mild (40 ≤ ZH < 45 dBZ), 17 intense (45 ≤ ZH < 50 dBZ), and 15 extreme (ZH > 50 

dBZ) storms. The number of storms is large during the monsoon season (65), allowing to obtain 

robust thresholds for predictors. Winter and premonsoon seasons have been not considered as there 

were not enough storm occurrences to meaningfully derive thresholds for predictors. 

 

Figure 5.2: (a) Plane Position Indicator (PPI) at 8° elevation obtained with an X-band dual 

polarization radar at Gadanki, showing embedded convective cells in the reflectivity field around 

Gadanki. (b) Temporal variation of meteorological parameters, temperature and wind speed 

obtained with an AWS, GNSS-based IWV and INSAT-derived Tb. 

Histograms of the maximum value of IWV, temporal gradients of IWV, temperature and wind 

speed and Tb, and the time at which the IWV starts to increase (additional IWV) relative to the 

time of storm (rainfall) (Δt) occurrence are plotted using the data from storm days, identified as 

per the procedure outlined above. The magnitude of gradients in temperature are found to be 

different for day and night, smaller during the night (peak is at 3 K) than in the day (peak is at 5 

K). However, it is found from many case studies that the rapid change in temperature and wind 

speed occurred at the time of event, while the gradients are found to be weaker prior to the 

storm/rainfall occurrence. They may be good to do nowcasting with a lead time of 30 min, but may 

not be suitable for longer lead times. Histograms of remaining parameters, magnitude of IWV, 

temporal gradients in IWV and Tb and Δt are shown in Figure 5.3. 
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The IWV is generally high during the monsoon season and additional IWV associated with storms 

increases the IWV further. The histogram of maximum IWV on storm days shows values larger 

than 50 mm with a peak in the range of 58-62 mm (Figure 5.3(a)). Not only IWV values, but the 

rate of increase of IWV is also high on the storm days with all the cases showing a rate ≥ 1.54 mm 

hr-1.  Rate of IWV values as large as 5-9 mm hr-1 were also observed, nevertheless, their occurrence 

is found to be less (Figure 5.3(b)). However, the histogram shows that on 50% of the days, the rate 

of IWV values is nearly equal to 2 mm hr-1 (1-5-2.5 mm hr-1 bin). The storms can also be 

recognized by the rapid growth of clouds. The histogram of temporal change in Tb shows values ≥ 

5 K hr-1 (Figure 5.3(c)). However, the cloud growth is much larger in many of the cases (~70% 

occurrence).  From Figure 5.3(d) it is evident that in most of the cases, IWV enhancement can 

typically be seen two hours before a storm, indicating that the majority of the cases can be 

identified two hours before the storm. However, some storms show an increase in IWV 1 hr before 

the occurrence of storm/rainfall. These details, particularly the lowest values in the histograms 

(representatives of weakest storms), are used to arrive at thresholds to identify the storms. 

Therefore, the thresholds of IWV, rate of IWV, and rate of Tb are finalized as 50 mm, 1.56 mm hr-

1, and 5 K km-1, respectively. 
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Figure 5.3: Histograms of (a) maximum IWV, (b) IWV gradient, (c) Tb gradient, and (d) generated 

from observations during 65 storm days. 

The above thresholds are compared and contrasted with those available in the literature at different 

geographical locations. Except for Tb, which was used only by Benevides et al. (2019), other 

parameters are extensively used by several researchers for identifying/predicting storms/rainfall 

(Benevides et al. 2015; Yao et al. 2017; Sapucci et al. 2019; Zhao et al. 2020). Yao et al. (2017) 

examined several rain events in Zhejiang province in the subtropical monsoon-affected zone in 

China and noted maximum IWV and rate of IWV are in the range of 51.1 mm - 73.9 mm and 0.93-

7 mm hr-1, respectively. The threshold IWV value used in the present study, i.e., 50 mm of 

maximum IWV, is very close to the lowest range noted by Yao et al. (2017). Also, the rate of IWV 

in the present study is within the range observed by Yao et al. (2017). Sapucci et al. (2019) also 

reported a rate of 2 mm hr-1 IWV before intense rainfall in CHUVA vale campaign in Brazil. 

Further, they noted that the IWV peaks 16-96 min. before the maximum rainfall and used the 

average rate of IWV to nowcast storms. Benevides et al. (2015) also noted the change in IWV 

around 1.4 mm hr-1, which is very close to the value used in the present study, for intense rain 

events in Portugal. However, some of the earlier studies have used much smaller thresholds for 
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IWV gradient (for ex., 0.6 by Yao et al. 2017) for identifying light rain. Zhao et al. (2020) also 

used a smaller threshold for IWV gradient for their rainfall detection algorithm in China. All these 

studies considered the increase in IWV from smallest to largest values of IWV before the storm 

and then normalized by the time to obtain hourly values. As shown in Figure 5.2b, the minimum 

to maximum IWV includes the diurnal variability, which is a slowly varying component and 

increases the time between the minimum and maximum IWV, thereby reducing the IWV gradient. 

However, IWV above the climatological diurnal variation is associated with the storm in the 

present study (13 July 2019). This increase in IWV is quite rapid and the gradient is also large as 

seen in the case study. Also, given the large diurnal amplitudes of IWV (of the order of >2 mm), 

smaller gradients may increase the false alarm. Therefore, a larger gradient in IWV is used in the 

present study.  

Considering the large seasonal variability in IWV, earlier studies suggested the use of different 

IWV thresholds for different seasons for identifying storms (Yao et al. 2017; Zhao et al. 2020). 

Given such constraints, the thresholds derived in the present study are valid only for the monsoon 

season, and for the other seasons, the thresholds need to be fine-tuned. 

5.3.3 Validation and Sensitivity Analysis  

The validation of storm prediction using the above two-step process has been carried out using 

observations from the year 2020. A total of 54 storms have been identified during the monsoon 

season of 2020 (validation period), i.e., from X-band radar reflectivity, decrease in temperature, 

increase in wind speed, IWV and change in Tb=5 K hr-1 and considered them as reference dataset. 

The procedure outlined in Section 5.3.2, i.e., first predicting the IWV using light GBM and then 

using the thresholds for predicted IWV magnitude and variation and INSAT-derived Tb, have been 

followed to nowcast storms. The nowcasted storms are tested against the reference dataset to 

validate the algorithm and thresholds. 

The algorithm’s sensitivity on the use of one predictor or multiple predictors has been tested by 

comparing with reference dataset and the evaluation statistics are shown in Table 5.2. Since, the 

smallest values of histograms were taken as thresholds for the respective parameters, the model is 

able to detect all the storms/rain events with single or multiple parameters (except for stability 

indices, like CAPE and K index), as evidenced by 100% probability of detection. However, the 

false alarm rate is high (47%-55%), when the model uses only single parameter (IWV/IWV 
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gradient/ Tb gradient) or two parameters (IWV and IWV rate) for nowcasting. For instance, the 

IWV exceeds 50 mm on many days as we are taking data from monsoon season, during which the 

IWV is generally high. This increases false alarm rate alarmingly to 53%. Similarly, the usage of 

smallest gradient for Tb gradient increases the false alarm rate to 55%. One can notice high false 

alarm rate of 48% even with a larger threshold of IWV gradient than those available in the 

literature. Usage of smaller threshold will drastically increase the false alarm rate and reduces the 

model accuracy.   

Traditionally meteorologists employ stability indices, like convective available potential energy 

(CAPE), K-index, etc., estimated from vertical soundings of temperature and humidity, for 

predicting storms. The above parameters are estimated using fifth-generation ECMWF 

atmospheric reanalysis of the global climate (ERA 5) data 30, 60, 90, 120 m before the 

storm/rainfall occurrence to capture the instability during prestorm environment. Similar to Figure 

5.3, histograms have been constructed and the smallest values are considered as thresholds for 

nowcasting. Based on histograms, the thresholds for CAPE and K index are finalized as 500 J Kg-

1 and 30 K, respectively. The 30 K threshold agrees with many earlier studies in India, the 500 J 

Kg-1 threshold for CAPE is smaller than the reported values, which typically are found to be larger 

than 1000 J Kg-1. 

Table 5.2: Evaluation statistics of single, double and 3-parameter schemes in predicting storms 

along with threshold values used for evaluation. 

Threshold Values  Probability of 

Detection (%) 

Miss Rate 

(%) 

False Alarm 

(%) 

Model 

Accuracy (%) 

IWV (mm) > 50 100 0 53.4 49.18 

IWV Rate (mm/hr) > 

1.56  

100 0 48.0 58.19 

Tb Rate (K/hr) < -5  100 0 55.00 45.90 

IWV > 50, IWV Rate 

>1.56  

100 0 47.50 59.80 

IWV > 50, IWV Rate > 

1.56, Tb Rate < -5 

100 0 5.20 97.50 
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However, these storms are mostly intense in nature. The inclusion of all storms in the present study, 

including weak storms, reduced the threshold. It is also possible that ERA5 may not be able to 

properly represent the prestorm environment for all storms. Nevertheless, the usage of these two 

parameters certainly reduced the false alarms compared to single and double-parameter models 

based on IWV or Tb. Still, the model missed some of the storms.  

Multiparameter models are found to be working well in nowcasting storms. For instance, 

introduction of the rate of change in brightness temperature as a third parameter in addition to the 

IWV and IWV gradient parameters has resulted in a noticeable improvement in the prediction 

algorithm. The three-parameter model lowered the false alarm rate drastically to 5.2% and 

increased the model accuracy to 97.50%. Similarly, inclusion of IWV and IWV parameters in 

CAPE and K-index based model, reduces the false alarm rate to 11% and increases model accuracy 

to 89%. It is clear from Table 5.2 that the three-parameter model using IWV, IWV gradient and Tb 

gradient works well with 100% detection capability of storms with a smaller false alarm rate.  

The above analysis is carried out with 30 min. predicted IWV. To examine the sensitivity of 

predicted IWV with different lead times on storm nowcasting, the IWV predicted at different time 

intervals (30, 60, 90 and 120 min) has been (like in Figure 5.1) used in the model. Three parameter 

model with IWV, IWV gradient and Tb gradient as inputs are used for sensitivity analysis. It can 

be seen from Table 5.3 that, no storms were missed with 30 minutes lead time (detection 

rate=100%), but about 12% of total storms were not detected with 120 min lead time. The 

algorithm’s performance degrades gradually with the increase in lead time. It can be seen that the 

probability of detection decreases gradually from 100% to 88%, missing rate and false alarms 

increase to 0 and 5% to 12%, respectively, as lead time increases from 30 min. to 120 min. 

Nevertheless, the model’s accuracy remains above 90% even with 120 min. lead time, which is 

comparable or better than the existing methods/models in the literature. 

CAPE (J/kg) > 500, K- 

Index (K) > 30 

87.04 12.96 33.80 74.59 

CAPE (J/kg) > 500,  

K-Index(K) > 30, PW > 

50, PW Rate > 1.56 

87.04 12.96 11.32 89.34 
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Table 5.3: Sensitivity of 3-parameter scheme in the prediction of storms with different lead times. 

Lead Time  Probability of 

Detection (%) 

 Miss Rate (%)  False Alarm 

Rate (%) 

Model 

Accuracy (%) 

30 min 100 0 6.89 96.72 

60 min 96.29 3.70 8.77 94.26 

90 min 94.44 7.40 10.71 91.80 

120 min 87.50 12.50 12.72 89.34 

 

5.4 Conclusion 

The GNSS-based storm prediction techniques, which are increasingly popular in recent years, 

essentially follow one of the following approaches: AI/ML techniques or threshold-based schemes. 

In the present study, a new hybrid scheme is introduced based on the strengths of both approaches. 

The algorithm first predicts the IWV using a machine learning technique (light GBM) with GNSS 

and surface measurements as inputs and then nowcast storms based on multiparameter threshold 

algorithm.  The accuracy of predicted IWV with 2 hours lead time is ~ 2 mm and the accuracy is 

found to be much better with shorter lead times (30 to 90 minutes).  The main advantage of the 

present scheme is that it uses predicted IWV to nowcast storms, which provides more time for 

disaster preparedness and rescue operations. The thresholds employed in the present algorithm are 

purely based on 18 months of GNSS-based IWV measurements made during the stormy days, 

which are identified based on radar and AWS observations.  The threshold for magnitude of IWV 

agrees quite well with those available in the literature at different geographical locations, indicating 

the robustness of this threshold. The study also clearly shows the increase in IWV starts few hours 

(1-4 hours) before the storm/rainfall occurrence, indicating the predictive potential of IWV 

gradient.  However, the IWV gradient used in the present study (1.56 mm hr-1) is larger than those 

used in some of the earlier studies. The smaller thresholds for IWV gradient in earlier studies are 

mainly due to the inclusion of routine diurnal variation in the estimation of gradient. In the current 

study climatological monthly diurnal variation of IWV has been used to identify storm associated 

IWV gradient and the threshold for gradient IWV is chosen from the storm associated IWV 
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gradient histogram. Smaller thresholds of IWV gradient will increase false alarm rates dramatically 

as reported in earlier studies.   

Evaluation of the model has been carried out by comparing its outcome with a reference dataset of 

54 stormy days in the year 2020 that were identified with an X-band radar and AWS.  The 

sensitivity of the individual predictors and combination of predictors in nowcasting storms has 

also been studied. In addition, the efficacy of traditionally used stability indices for storm 

prediction has tested. Because of the smaller thresholds used in the present study, the probability 

of detection of storms is found to be 100% with IWV magnitude, IWV gradient, Tb gradient and 

any combination of these parameters. However, the false alarm rate is startlingly high with the 

usage of single or two predictors for nowcasting purpose. The inclusion of Tb gradient to IWV 

magnitude and gradients drastically reduced the false alarm rates to ~5% and increased the success 

ratio to 97.5%.  The stability parameters, like CAPE and K index failed to predict storms accurately 

with 87% probability of detection and ~34% false alarm rate. The addition of IWV parameters 

improved the accuracy of the model by ~15%. The study unequivocally demonstrates the 

importance of IWV in nowcasting storms as it improves the model’s success ratio with both 

traditional stability indices and Tb gradient.  

The ability of the three-parameter model (IWV magnitude and gradient and Tb gradient) in 

nowcasting with different lead times has also been tested. It is noted, in general, that the model 

performance degrades with increase in lead time with increase in the percentage of missing storms 

and false alarm rates. However, the model’s accuracy still remains close to 90% with 120 min. 

lead time, which is much better than the existing methods. 
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6.1 Introduction 

The accurate prediction of storms is of paramount importance for effective disaster management 

and saving human life. Traditional storm forecasting methods, those based on numerical weather 

prediction products, have limitations in accurately predicting the variations in Integrated Water 

Vapor (IWV), a critical parameter influencing storm development and movement. Artificial 

Intelligence and Machine Learning (AI/ML) techniques are very powerful tools and are becoming 

increasingly popular in geoscience and earth sciences. Recently, several AI/ML-based models have 

been developed to nowcast storms using radar, lightning sensor, satellite and radiometer 

measurements (Roberts and Rutledge 2003). To overcome the limitations in traditional 

extrapolation methods of cell and area tracking of weather radar echoes, several studies focused 

on employing AI/ML techniques for nowcasting storms. Convolutional long short-term memory 

(LSTM) models with radar observations as input have been successful in nowcasting storms (Kim 

and Chandrasekar, 2021; Kim and Ushio 2022). Yang and Yuan (2023) argued that these techniques 

have a good potential to nowcast low-intensity precipitation events, but yield poor results in 

predicting high-intensity storms. They proposed customized multi-scale deep learning framework 

for nowcasting storms using weather radar observations, which ensures multi-scale spatiotemporal 

consistency. Recent attempts follow multi-sensor data fusion approaches to improve nowcasting 

of storms, including observations from weather radar, meteorological satellite and lightning 

observations along with numerical weather prediction model outputs (Leinonen et al. 2022; 

Ortland et al. 2023; Li et al. 2024).  

In recent years, Global Navigation Satellite System (GNSS) technology has emerged as a 

promising solution for IWV measurement and analysis, offering improved precision and accuracy 

in storm nowcasting (Benevides et al. 2015; Yao et al. 2017; Manandhar et al. 2018; Martinez et 

al. 2022). Numerous methods have been developed to improve the predictability of storm 

occurrence by leveraging the concept of unusual enhancement in IWV before the storm. These 

techniques primarily depend on any or all of the factors related to IWV, like threshold magnitude 

of IWV, temporal change in IWV, rate of change of IWV (Benevides et al. 2015; Yao et al. 2017; 

Manandhar et al. 2018; Martinez et al. 2022).  Some of the earlier methods based on single or two 

parameters were successful in predicting the storm/rainfall occurrence with 70%-90% accuracy 

but suffer with large false alarm rates (as large 70%). Benevides et al. (2019) developed an 
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algorithm integrating cloud top temperature and pressure with IWV, air pressure, relative humidity, 

surface air pressure, and temperature to predict rainfall events to reduce the false alarm rate. Los 

et al. (2020) proposed a methodology that combines GNSS-based IWV with wet refractivity 

profiles to predict storms in Poland with an accuracy of over 87%. Manandhar et al. (2019) analyze 

different meteorological parameters alongside IWV to create a data-driven machine learning 

algorithm for rainfall prediction, achieving a true detection rate of 80.4%.  Khaniani et al. (2021) 

employed artificial neural network (ANN) models with IWV and other parameters as inputs, which 

outperformed standard meteorological forecasts. As discussed in chapter 4 we have developed a 

machine learning approach for the prediction of IWV using measurements from GNSS receiver 

and automatic weather station (AWS) with varying lead times. Their approach yielded good results 

not only for fair weather conditions but also during the storm conditions. Using predicted IWV 

and INSAT-derived Tb, in Chapter 5, devised a multi-parameter scheme to nowcast storms (Bisht 

et al. 2022; Bisht et al. 2024).  

As noted above, all the studies either used thresholds of IWV and rate of IWV or some machine 

learning models to predict the storm without dwelling much on the efficacy of the model. Also, 

these studies do not dwell much on the comparison with other machine learning models. The 

present study, therefore, aims to develop and evaluate various machine- and deep-learning-based 

models (Logistic Regression, XGBoost, Random Forest, Catboost, LightGBM, and ANN) with 

GNSS IWV and INSAT-derived Tb as inputs for nowcasting storm events with various lead times 

ranging from 30 minutes to 120 minutes. The findings of this research hold implications for real-

time storm warning systems, providing valuable insights into the potential of GNSS-based IWV 

data and machine learning models in storm nowcasting. 

6.2 Data and Methodology  

The detailed methodology of each Machine learning model has been described in chapter 2. 

Therefore, only summary of those models is given below.  

6.2.1 Data Collection and Preprocessing 

The data from multiple instruments, including GNSS receiver (Trimble NetR9), AWS (Vaisala 

WXT536) and Indian National Satellite (INSAT) – 3DR, have been used for nowcasting the storm. 

GNSS Integrated Water Vapor (IWV) data were obtained from a Global Navigation Satellite 

System (GNSS) receiver located at Gandaki, NARL, India. The GNSS receiver-sampled 1 Hz data 



103 
 

are post processed with GAMIT/GAMIK software by considering the data within the cone of ±75° 

from zenith. The pressure from the AWS is used to correct for Zenith Hydrostatic Delay from 

Zenith Tropospheric Delay to obtain Zenith Wet delay, which is then converted into IWV using 

the relations obtained for this region (Bisht et al. 2022). A detailed comparison with radiosonde 

derived IWV shows that the error in GNSS-derived IWV is less than 2 mm.  The AWS measured 

pressure, temperature, wind speed and direction, humidity, and rainfall are also used for 

identification and prediction of the storm. The cloud growth information is obtained from Infrared 

brightness temperature (BT) from INSAT 3DR.  

The data collection period spanned from July 2018 to December 2020, focusing specifically on 

the monsoon season. The dataset was divided into training, validation, and test subsets. The 

training dataset comprised data from 2018 and 2019, while the validation and test datasets 

contained data from 2020. Prior to conducting the analysis, quality control checks were 

implemented to ensure the reliability and consistency of the data (i.e., removal of erroneous or 

corrupted data points). Small gaps (less than 2 min) in the time-series of RINEX data are filled 

with interpolation techniques. If the data gap is longer than 20 min., that half an hour data is not 

considered for further analysis. We also synchronized the data from different sensors to align the 

timestamps accurately. 

6.2.2 Model Selection and Training  

Several machine learning algorithms have been evaluated to determine the most suitable model 

for storm prediction. To determine the best-performing model, a comparative analysis has been 

conducted using performance metrics such as Area Under the Receiver Operating Characteristic 

curve (AUC-ROC) and Cohen's kappa score.  These metrics provide valuable insights into the model's 

classification accuracy and agreement with the ground truth data. 

Based on the evaluation from figure 6.1, it is evident that the random forest algorithm is best among 

all as both ROC AUC and Kohen Kappa scores are higher than that of other models. Although, 

logistic Regression ROC AUC score is high but corresponding Cohen Kappa Score is way less 

indicating illogical prediction of storm events. Based on the Analysis, RF is selected as the primary 

model due to its superior performance in terms of AUC-ROC and kappa scores. RF also offers 
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advantages in handling missing values and outliers, making it well-suited for our dataset (Bisht et 

al. 2024). 

 

Figure 6.1: Determining AUC ROC and Kohen Kappa Score for selecting Best ML model. 

In addition to the RF model, the potential of deep learning model is also explored by employing 

ANN model for the present purpose. Deep neural networks are known for their ability to capture 

complex relationships within data, and the ANN model was evaluated alongside RF to assess its 

effectiveness in storm prediction. Both models were trained on the training dataset and validated 

using the validation dataset, while the test dataset was used for final model evaluation. 

The performance of the models was evaluated for different lead times (30, 60, 90, and 120 minutes) 

to assess their ability to predict storm events in advance. The evaluation focused on metrics such 

as true detection rate, false alarm rate, miss rate, and overall accuracy. 

6.3 Results and Discussion 

6.3.1 Model Performance and Feature Importance 

The results of our analysis showed that the random forest model outperformed other machine 

learning algorithms, including Logistic Regression, XGBoost, Catboost, LightGBM and ANN, in 
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predicting storm events. Based on the evaluation metrics, including AUC-ROC and Cohen's kappa 

score, RF emerged as the most effective model, achieving an accuracy rate of 93.07% in 

nowcasting storms (Table 6.1). The true detection rate was 93.42%, while the false alarm rate was 

acceptable at 5.33%. These results indicate that the RF model is well-suited for real-time storm 

prediction, providing reliable and accurate forecasts. 

Table 6.1:  Statistics for predictability RF model for different time horizons. 

Time Horizon True Detection 

(%) 

Miss Rate (%) False Alarm (%) Accuracy 

(%) 

Real Time 93.42 6.58 5.33 93.07 

30 mins 91.37 8.63 7.92 91.67 

60 mins 88.58 11.42 10.45 89.12 

90 mins 85.64 14.36 13.79 84.99 

120 mins 81.33 18.67 17.73 82.40 

 

Figure 6.2: Feature importance of various parameters employed in RF model. 

Feature importance analysis for RF model (Figure 6.2) revealed that IWV was the most critical 

parameter for storm prediction, followed by Tb, followed by wind speed, RH, T and P. This 

analysis highlights the importance of GNSS-derived IWV and satellite-based Tb as key indicators 

of storm potential, as also seen in Chapter 4. Though other meteorological parameters show large 

variation at the time of storm (like reduction in T, increase in WS and RH, etc.), but do not show 

such signature much before the storm, thereby, lacking the predictive potential. 
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6.3.2 Performance Across Different Time Horizons 

The performance of the predictive models was assessed for different time horizons, ranging from 

30 to 120 minutes. As seen in Table 6.1, the random forest model achieved accuracy rates of 

91.67%, 89.12%, 84.99%, and 82.40% for lead times of 30, 60, 90, and 120 minutes, respectively. 

The corresponding true detection rates were 91.37%, 88.58%, 85.64%, and 81.33%. While the 

accuracy and detection rates decreased slightly with longer lead times, the model still maintained 

a reasonable level of accuracy, indicating its potential for operational use in nowcasting. Not only 

the true detection rate but for miss rate and false alarm rate, the RF model showed good statistics. 

False alarm was only 7.92% for 30 min which is quite acceptable in real time applications. 

The predicting capability of deep neural-based ANN model has been also been examined and it is 

found that ANN model also performed well, achieving an accuracy rate of 91.45% (Table 6.2) in 

real-time scenario analysis. The true detection rates and false alarm rates of the ANN model were 

comparable to those of the RF model, suggesting that ANN is a viable option for storm prediction. 

Usually Deep learning models need large amount of data to train itself. Based on the availability 

of the dataset ANN model also performed well in this case. 

Table 6.2: Statistics for predictability ANN model for different time horizons. 

Time Horizon True Detection 

(%) 

False Alarm 

(%) 

Miss Rate (%) Accuracy (%) 

Real Time 91.78 8.22 6.98 91.45 

30 mins 89.91 10.09 9.27 90.15 

60 mins 87.02 12.98 11.81 87.47 

90 mins 83.89 16.11 14.79 84.25 

120 mins 79.67 20.33 18.14 80.10 

6.3.3 Comparative Analysis of RF and ANN Models 

 To establish the statistical significance of the performance differences between the RF and ANN 

models, hypothesis testing was conducted. The results indicated that the differences in 

performance between the two models were statistically insignificant (p > 0.05), implying that both 

models have similar capabilities in predicting storm events. However, the ANN model's 

computational efficiency provides a distinct advantage, making it a more efficient choice for 
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operational storm prediction, especially with larger datasets. The results of this study indicate that 

both RF and ANN have strengths that can be used for storm prediction. While RF demonstrated 

superior accuracy, the ANN model showed promise in terms of efficiency and computational 

performance. For future research, exploring ensemble methods or hybrid models that combine the 

strengths of RF and ANN could further enhance storm prediction accuracy and reliability, 

particularly when dealing with limited data. This approach holds significant promise for advancing 

storm nowcasting techniques and strengthening our ability to predict and prepare for storm events. 

6.4 Conclusion 

A comprehensive analysis has been presented in this chapter, highlighting the potential of machine 

learning-based approaches, particularly RF and ANN models, in nowcasting storm events. By 

leveraging GNSS-based IWV data, satellite-derived Tb, and other meteorological parameters, a 

robust framework for storm prediction has been developed for providing accurate and timely 

nowcasts of storms. The RF model exhibited high accuracy and robustness in predicting storm 

events, achieving a true detection rate of 93.42% and an accuracy rate of 93.07% in real-time 

scenarios. Feature importance analysis emphasized the critical role of IWV and Tb in storm 

prediction, highlighting the value of integrating GNSS and satellite data for improving storm 

nowcasting. 

The performance of the models across different time horizons demonstrated their potential for 

providing early warnings, with accuracy rates remaining above 80% even for lead times of up to 

120 minutes. The comparative analysis of RF and ANN models indicated that both models are 

suitable for storm prediction, with ANN offering additional advantages in terms of computational 

efficiency. Future work will focus on developing ensemble models that combine the strengths of 

RF and ANN, aiming to further improve prediction accuracy and reliability. Additionally, 

expanding the application of these models to different geographic regions and integrating 

additional atmospheric predictors will be key areas of future research. The insights gained from 

this study have significant implications for weather forecasting, disaster management, and 

infrastructure planning, ultimately contributing to enhanced preparedness and mitigation of storm 

impacts. 
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7.1 Summary 

Storms are one of the deadliest weather hazards with devastating damage potential due to the 

accompanying severe winds, intense rainfall, and lightning. There is a tremendous improvement 

in the forecast of these storms by numerical weather prediction models in recent years due to better 

data availability for initialization of model and higher computational power. NWP models are 

proven their capability in forecasting large-scale storms, but often fail in predicting small-scale 

thunderstorms. Recently, GNSS-derived IWV-based nowcasting techniques are becoming popular 

by monitoring the moisture buildup. Moreover, GNSS-derived IWV’s all weather and continuous 

capability makes it more attractive parameter for nowcasting of storms. The present thesis provides 

various nowcasting approaches for storm prediction (threshold-based techniques and AI/ML 

techniques) using 3 years of GNSS receiver measurements made at Gadanki.  

The moisture builds up before the storm occurrence as moisture is the basic ingredient for cloud 

formation (cloud drop). Earlier researchers, therefore, mainly used the IWV variation (along with 

its magnitude) as a parameter for nowcasting of storms. However, the IWV exhibits a prominent 

diurnal cycle governed by a variety of processes, surface evaporation, moisture flux, and sea-

breeze circulation.  To delineate the moisture-build up associated with storm, one should 

understand the diurnal variation of IWV in different seasons.  The first work, therefore, focuses on 

quantifying the diurnal variability of IWV in different seasons and understanding the underlying 

processes responsible for the diurnal variability.  GNSS data from a network of seven receivers 

collected over a three-year period (September 2018 to August 2021) were used to investigate the 

diurnal and semi-diurnal variations in IWV. Harmonic analysis revealed that the diurnal harmonic 

(24-hour cycle) is more prominent and significantly stronger than the semi-diurnal harmonic, with 

notable seasonal and monthly variations in amplitude and phase. Both diurnal and semi-diurnal 

oscillations in IWV amplitude show two peaks in their annual cycle, November and April-May.  

The average diurnal amplitude range varies between 2.3 to 3.8 mm, whereas the average semi-

diurnal amplitude range varies between 1.4 to 2 mm. It is also observed that the diurnal variations 

with amplitudes greater than 5 mm are occurring predominantly during the pre-monsoon and post-

monsoon.  The percentage occurrence of diurnal phase shows a broad peak during noon – 

midnight. The average phase of diurnal harmonic varies between 12-13 UTC in winter, 13.5-14.5 

UTC in pre-monsoon, 14-15 UTC in monsoon, and 11.5 to 13 UTC in post-monsoon. This 
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indicates that IWV peaks late in hotter seasons of monsoon and pre-monsoon than the colder 

seasons. VIMFC combined with vertical wind are found to be the major factors contributing to the 

observed IWV diurnal variation over Gadanki and also for occurrence of seasonal differences in 

the phase. Diurnal phase of IWV is coinciding with the time at which maximum convergence is 

occurring at lower pressure levels for all seasons except monsoon. For monsoon, the diurnal peak 

is coinciding with the time when the atmosphere at lower pressure levels is changing from 

convergence to divergence 

Long-term measurements of the GNSS receiver at Gadanki, India, have been used to develop a 

ML technique – light gradient boosting machine (lightGBM) for the prediction of IWV with 

different lead times. A variety of data sets related to IWV (representing source, sink, and transport) 

and short-scale features of IWV (gradients, sinusoidal pattern) have been used to train the model. 

Model performance is validated in different seasons. The predicted IWV at different lead times 

(30–120 min) perfectly captures the temporal variability of measured IWV with a correlation 

coefficient >0.99. The root mean square error (RMSE) of predicted IWV with 30 min lead time is 

less than 1 mm in all seasons. Nevertheless, the RMSE for predicted IWV with longer lead times 

increases with lead time but always remains <3 mm. The bias is slightly larger during the monsoon, 

mainly due to the higher occurrence of longer-duration rainy events. Even in those days, the model 

is able to accurately (correlation coefficient >0.99) predict the enhanced IWV before the rain 

occurrence. Sensitivity analysis and feature importance analysis on different predictors used in the 

model reveal that the IWV features are more important for short-scale prediction, like 30 min, 

whereas the importance of other predictors is high for longer lead time prediction (1–2 h) and on 

storm days. 

A hybrid model for nowcasting of storms has been developed by employing predicted IWV with 

LightGBM and estimated thresholds for three storm predictors. The utilization of predicted IWV 

allows more lead time for disaster preparedness. The efficacy of light GBM technique in predicting 

IWV has been tested on 54 stormy days (from the year 2020), identified with a collocated 

polarimetric weather radar observations. The predicted IWV agrees very well with observed IWV 

with rms errors <1.2 mm (correlation coefficient >0.85) for predictions with a lead time up to 2 h. 

Among several predictors considered for nowcasting, IWV is found to have a great predictive 

potential, as the moisture buildup is seen few hours (1–4 h) prior to the occurrence of 
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storm/rainfall. Thresholds for chosen predictors [magnitude of IWV, change in IWV, and change 

in brightness temperature (Tb)] are finalized using the data from known stormy days (65 days from 

the years 2018 and 2019). The sensitivity analysis of the predictors independently and in 

combination in predicting storms reveals that 1 and 2 parameter-based predictions detect storms 

accurately means there is no miss rate but produce large false alarm rates. The three-parameter 

scheme reduced the false alarm rate drastically to 5% and improved the model accuracy to 97%, 

which is much better than the existing methods. 

In addition to above hybrid model, which is based on thresholds, various AI/ML approaches have 

been followed, including Random Forest, Support Vector Machine, Decision Trees, and Artificial 

Neural Networks, to develop a stand-alone ML model for storm nowcasting using GNSS-derived 

IWV and additional meteorological parameters. Among the models evaluated, Random Forest 

demonstrated the highest accuracy and robustness. The contribution of different predictors, 

including IWV time series, brightness temperature, surface temperature, pressure, and wind speed, 

was also analyzed, with IWV and brightness temperature emerging as the most significant 

predictors. Evaluation metrics, such as AUC-ROC score and Cohen’s Kappa, were used to assess 

model performance. The deep learning-based ANN model also demonstrated the potential of using 

GNSS-based IWV variations for real-time storm warning systems. Based on Cohen’s Kappa and 

AUC-ROC score, Random Forest emerged as the best method for storm prediction, achieving a 

true detection rate greater than 81% for a 2-hour lead time, while ANN also showed similar 

capability with a true detection rate of nearly 80% for the same lead time, demonstrating the 

applicability of advanced data-driven approaches in improving storm prediction accuracy and 

aiding disaster preparedness and response in semi-arid regions. 

7.2 Future Scope 

The findings of this thesis offer promising directions for further research and development in the 

field of atmospheric science and storm prediction. The following are the key areas for future 

exploration: 

7.2.1 Expansion to Broader Geographical Regions 

Future studies could expand the methodology used in this research to different geographical 

regions, such as coastal, mountainous, and urban areas, to evaluate how IWV variability and storm 
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prediction models perform under varying climatic and environmental conditions. This expansion 

would enhance the generalizability of the prediction models. 

7.2.2 Integration with Additional Data Sources 

Incorporating additional atmospheric data, such as soil moisture, NWP outputs and other satellite-

derived parameters, can enhance the predictive capabilities of the models. Using these diverse data 

sources would provide a better understanding of the interactions between atmospheric 

components, potentially improving IWV prediction and storm forecasting accuracy. 

7.2.3 Real-Time Implementation and Early Warning Systems 

A major future goal is the real-time application of these models in operational weather forecasting. 

Integrating the prediction and nowcasting models into existing early warning systems can help 

meteorological agencies provide timely alerts for extreme weather events, thereby improving 

disaster preparedness and emergency response efforts. 

7.2.4 Refinement of Regional and Seasonal Thresholds 

Developing region-specific and season-specific thresholds for storm prediction can help improve 

model accuracy and reduce false alarms. Future work could focus on adapting the storm prediction 

thresholds to account for regional climatic characteristics, making the models more versatile for 

different weather conditions. 

7.2.5 Hybrid Modeling Approaches for Better Accuracy 

This thesis introduced a hybrid approach combining machine learning and threshold-based 

techniques for storm nowcasting. Future research could further enhance hybrid models by 

incorporating probabilistic methods and uncertainty quantification, providing better predictions 

under varying data conditions, and ensuring improved reliability in early warning systems. 
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